MAT1001 Differential Calculus: Lecture Notes
\(\newcommand{\footnotename}{footnote}\)
\(\def \LWRfootnote {1}\)
\(\newcommand {\footnote }[2][\LWRfootnote ]{{}^{\mathrm {#1}}}\)
\(\newcommand {\footnotemark }[1][\LWRfootnote ]{{}^{\mathrm {#1}}}\)
\(\let \LWRorighspace \hspace \)
\(\renewcommand {\hspace }{\ifstar \LWRorighspace \LWRorighspace }\)
\(\newcommand {\TextOrMath }[2]{#2}\)
\(\newcommand {\mathnormal }[1]{{#1}}\)
\(\newcommand \ensuremath [1]{#1}\)
\(\newcommand {\LWRframebox }[2][]{\fbox {#2}} \newcommand {\framebox }[1][]{\LWRframebox } \)
\(\newcommand {\setlength }[2]{}\)
\(\newcommand {\addtolength }[2]{}\)
\(\newcommand {\setcounter }[2]{}\)
\(\newcommand {\addtocounter }[2]{}\)
\(\newcommand {\arabic }[1]{}\)
\(\newcommand {\number }[1]{}\)
\(\newcommand {\noalign }[1]{\text {#1}\notag \\}\)
\(\newcommand {\cline }[1]{}\)
\(\newcommand {\directlua }[1]{\text {(directlua)}}\)
\(\newcommand {\luatexdirectlua }[1]{\text {(directlua)}}\)
\(\newcommand {\protect }{}\)
\(\def \LWRabsorbnumber #1 {}\)
\(\def \LWRabsorbquotenumber "#1 {}\)
\(\newcommand {\LWRabsorboption }[1][]{}\)
\(\newcommand {\LWRabsorbtwooptions }[1][]{\LWRabsorboption }\)
\(\def \mathchar {\ifnextchar "\LWRabsorbquotenumber \LWRabsorbnumber }\)
\(\def \mathcode #1={\mathchar }\)
\(\let \delcode \mathcode \)
\(\let \delimiter \mathchar \)
\(\def \oe {\unicode {x0153}}\)
\(\def \OE {\unicode {x0152}}\)
\(\def \ae {\unicode {x00E6}}\)
\(\def \AE {\unicode {x00C6}}\)
\(\def \aa {\unicode {x00E5}}\)
\(\def \AA {\unicode {x00C5}}\)
\(\def \o {\unicode {x00F8}}\)
\(\def \O {\unicode {x00D8}}\)
\(\def \l {\unicode {x0142}}\)
\(\def \L {\unicode {x0141}}\)
\(\def \ss {\unicode {x00DF}}\)
\(\def \SS {\unicode {x1E9E}}\)
\(\def \dag {\unicode {x2020}}\)
\(\def \ddag {\unicode {x2021}}\)
\(\def \P {\unicode {x00B6}}\)
\(\def \copyright {\unicode {x00A9}}\)
\(\def \pounds {\unicode {x00A3}}\)
\(\let \LWRref \ref \)
\(\renewcommand {\ref }{\ifstar \LWRref \LWRref }\)
\( \newcommand {\multicolumn }[3]{#3}\)
\(\require {textcomp}\)
\(\require {upgreek}\)
\(\newcommand {\intertext }[1]{\text {#1}\notag \\}\)
\(\let \Hat \hat \)
\(\let \Check \check \)
\(\let \Tilde \tilde \)
\(\let \Acute \acute \)
\(\let \Grave \grave \)
\(\let \Dot \dot \)
\(\let \Ddot \ddot \)
\(\let \Breve \breve \)
\(\let \Bar \bar \)
\(\let \Vec \vec \)
\(\require {cancel}\)
\(\newcommand {\LWRsubmultirow }[2][]{#2}\)
\(\newcommand {\LWRmultirow }[2][]{\LWRsubmultirow }\)
\(\newcommand {\multirow }[2][]{\LWRmultirow }\)
\(\newcommand {\mrowcell }{}\)
\(\newcommand {\mcolrowcell }{}\)
\(\newcommand {\STneed }[1]{}\)
\(\def \ud {\mathrm {d}}\)
\(\def \ui {\mathrm {i}}\)
\(\def \uj {\mathrm {j}}\)
\(\def \uh {\mathrm {h}}\)
\(\newcommand {\R }{\mathbb {R}}\)
\(\newcommand {\N }{\mathbb {N}}\)
\(\newcommand {\C }{\mathbb {C}}\)
\(\newcommand {\Z }{\mathbb {Z}}\)
\(\newcommand {\CP }{\mathbb {C}P}\)
\(\newcommand {\RP }{\mathbb {R}P}\)
\(\def \bk {\vec {k}}\)
\(\def \bm {\vec {m}}\)
\(\def \bn {\vec {n}}\)
\(\def \be {\vec {e}}\)
\(\def \bE {\vec {E}}\)
\(\def \bx {\vec {x}}\)
\(\def \uL {\mathrm {L}}\)
\(\def \uU {\mathrm {U}}\)
\(\def \uW {\mathrm {W}}\)
\(\def \uE {\mathrm {E}}\)
\(\def \uT {\mathrm {T}}\)
\(\def \uV {\mathrm {V}}\)
\(\def \uM {\mathrm {M}}\)
\(\def \uH {\mathrm {H}}\)
\(\DeclareMathOperator {\sech }{sech}\)
\(\DeclareMathOperator {\csch }{csch}\)
\(\DeclareMathOperator {\arcsec }{arcsec}\)
\(\DeclareMathOperator {\arccot }{arcCot}\)
\(\DeclareMathOperator {\arccsc }{arcCsc}\)
\(\DeclareMathOperator {\arccosh }{arcCosh}\)
\(\DeclareMathOperator {\arcsinh }{arcsinh}\)
\(\DeclareMathOperator {\arctanh }{arctanh}\)
\(\DeclareMathOperator {\arcsech }{arcsech}\)
\(\DeclareMathOperator {\arccsch }{arcCsch}\)
\(\DeclareMathOperator {\arccoth }{arcCoth}\)
\(\def \re {\textup {Re}}\)
\(\def \im {\textup {Im}}\)
\(\newcommand {\up }{\uppi }\)
\(\newcommand {\ut }{\uptheta }\)
\(\newcommand {\uw }{\upomega }\)
\(\newcommand {\uph }{\upphi }\)
\(\newcommand {\uvph }{\upvarphi }\)
Bibliography
-
Collins. asymptotically. In Collinsdictionary.com. URL https://www.collinsdictionary.com/dictionary/english/asymptotically. Accessed 24th July 2025.
-
P Dawkins. Paul’s Online Notes: Algebra, 2025a. URL https://tutorial.math.lamar.edu/Classes/Alg/Alg.aspx. Last accessed 6th
October 2025.
-
P Dawkins. Paul’s Online Notes: Calculus I, 2025b. URL https://tutorial.math.lamar.edu/Classes/CalcI/CalcI.aspx. Last
accessed 5th June 2025.
-
O.E. Fernandez. Everyday Calculus: Discovering the Hidden Math All around Us. Princeton University Press, 2017. ISBN 9780691175751.
-
S. Hart. Once Upon a Prime: The Wondrous Connections Between Mathematics and Literature. Flatiron Books, 2023. ISBN 9781250850898.
-
D. Jordan and P. Smith. Mathematical Techniques: An Introduction for the Engineering, Physical, and Mathematical Sciences. OUP Oxford, 2008. ISBN 9780199282012.
-
R. Lissamen and E. West. Mei Numerical Methods. MEI Structured Mathematics (a+AS Level) Series. Hodder Education Group, 2004. ISBN 9780340814611.
-
P.J. Nahin. Inside Interesting Integrals: A Collection of Sneaky Tricks, Sly Substitutions, and Numerous Other Stupendously Clever, Awesomely Wicked, and Devilishly Seductive Maneuvers for Computing Hundreds of Perplexing
Definite Integrals From Physics, Engineering, and Mathematics (Plus Numerous Challenge Problems with Complete, Detailed Solutions). Undergraduate Lecture Notes in Physics. Springer International Publishing, 2020. ISBN 9783030437886.
-
Z.H. Nitecki. Calculus Deconstructed: A Second Course in First-Year Calculus. AMS/MAA Textbooks. Mathematical Association of America, 2022. ISBN 9781470466756.
-
M. Parker. Love Triangle: How Trigonometry Shapes the World. Penguin Publishing Group, 2025. ISBN 9780593418116.
-
Rod Pierce. Maths is Fun: Calculus, 2025. URL https://www.mathsisfun.com/calculus/. Last accessed 12th November 2025.
-
K. F. Riley, M. P. Hobson, and S. J. Bence. Mathematical methods for physics and engineering. Cambridge University Press, third edition, 2006. ISBN 9780521679718.