MAT1001 Differential Calculus: Lecture Notes

\(\newcommand{\footnotename}{footnote}\) \(\def \LWRfootnote {1}\) \(\newcommand {\footnote }[2][\LWRfootnote ]{{}^{\mathrm {#1}}}\) \(\newcommand {\footnotemark }[1][\LWRfootnote ]{{}^{\mathrm {#1}}}\) \(\let \LWRorighspace \hspace \) \(\renewcommand {\hspace }{\ifstar \LWRorighspace \LWRorighspace }\) \(\newcommand {\TextOrMath }[2]{#2}\) \(\newcommand {\mathnormal }[1]{{#1}}\) \(\newcommand \ensuremath [1]{#1}\) \(\newcommand {\LWRframebox }[2][]{\fbox {#2}} \newcommand {\framebox }[1][]{\LWRframebox } \) \(\newcommand {\setlength }[2]{}\) \(\newcommand {\addtolength }[2]{}\) \(\newcommand {\setcounter }[2]{}\) \(\newcommand {\addtocounter }[2]{}\) \(\newcommand {\arabic }[1]{}\) \(\newcommand {\number }[1]{}\) \(\newcommand {\noalign }[1]{\text {#1}\notag \\}\) \(\newcommand {\cline }[1]{}\) \(\newcommand {\directlua }[1]{\text {(directlua)}}\) \(\newcommand {\luatexdirectlua }[1]{\text {(directlua)}}\) \(\newcommand {\protect }{}\) \(\def \LWRabsorbnumber #1 {}\) \(\def \LWRabsorbquotenumber "#1 {}\) \(\newcommand {\LWRabsorboption }[1][]{}\) \(\newcommand {\LWRabsorbtwooptions }[1][]{\LWRabsorboption }\) \(\def \mathchar {\ifnextchar "\LWRabsorbquotenumber \LWRabsorbnumber }\) \(\def \mathcode #1={\mathchar }\) \(\let \delcode \mathcode \) \(\let \delimiter \mathchar \) \(\def \oe {\unicode {x0153}}\) \(\def \OE {\unicode {x0152}}\) \(\def \ae {\unicode {x00E6}}\) \(\def \AE {\unicode {x00C6}}\) \(\def \aa {\unicode {x00E5}}\) \(\def \AA {\unicode {x00C5}}\) \(\def \o {\unicode {x00F8}}\) \(\def \O {\unicode {x00D8}}\) \(\def \l {\unicode {x0142}}\) \(\def \L {\unicode {x0141}}\) \(\def \ss {\unicode {x00DF}}\) \(\def \SS {\unicode {x1E9E}}\) \(\def \dag {\unicode {x2020}}\) \(\def \ddag {\unicode {x2021}}\) \(\def \P {\unicode {x00B6}}\) \(\def \copyright {\unicode {x00A9}}\) \(\def \pounds {\unicode {x00A3}}\) \(\let \LWRref \ref \) \(\renewcommand {\ref }{\ifstar \LWRref \LWRref }\) \( \newcommand {\multicolumn }[3]{#3}\) \(\require {textcomp}\) \(\require {upgreek}\) \(\newcommand {\intertext }[1]{\text {#1}\notag \\}\) \(\let \Hat \hat \) \(\let \Check \check \) \(\let \Tilde \tilde \) \(\let \Acute \acute \) \(\let \Grave \grave \) \(\let \Dot \dot \) \(\let \Ddot \ddot \) \(\let \Breve \breve \) \(\let \Bar \bar \) \(\let \Vec \vec \) \(\require {cancel}\) \(\newcommand {\LWRsubmultirow }[2][]{#2}\) \(\newcommand {\LWRmultirow }[2][]{\LWRsubmultirow }\) \(\newcommand {\multirow }[2][]{\LWRmultirow }\) \(\newcommand {\mrowcell }{}\) \(\newcommand {\mcolrowcell }{}\) \(\newcommand {\STneed }[1]{}\) \(\def \ud {\mathrm {d}}\) \(\def \ui {\mathrm {i}}\) \(\def \uj {\mathrm {j}}\) \(\def \uh {\mathrm {h}}\) \(\newcommand {\R }{\mathbb {R}}\) \(\newcommand {\N }{\mathbb {N}}\) \(\newcommand {\C }{\mathbb {C}}\) \(\newcommand {\Z }{\mathbb {Z}}\) \(\newcommand {\CP }{\mathbb {C}P}\) \(\newcommand {\RP }{\mathbb {R}P}\) \(\def \bk {\vec {k}}\) \(\def \bm {\vec {m}}\) \(\def \bn {\vec {n}}\) \(\def \be {\vec {e}}\) \(\def \bE {\vec {E}}\) \(\def \bx {\vec {x}}\) \(\def \uL {\mathrm {L}}\) \(\def \uU {\mathrm {U}}\) \(\def \uW {\mathrm {W}}\) \(\def \uE {\mathrm {E}}\) \(\def \uT {\mathrm {T}}\) \(\def \uV {\mathrm {V}}\) \(\def \uM {\mathrm {M}}\) \(\def \uH {\mathrm {H}}\) \(\DeclareMathOperator {\sech }{sech}\) \(\DeclareMathOperator {\csch }{csch}\) \(\DeclareMathOperator {\arcsec }{arcsec}\) \(\DeclareMathOperator {\arccot }{arcCot}\) \(\DeclareMathOperator {\arccsc }{arcCsc}\) \(\DeclareMathOperator {\arccosh }{arcCosh}\) \(\DeclareMathOperator {\arcsinh }{arcsinh}\) \(\DeclareMathOperator {\arctanh }{arctanh}\) \(\DeclareMathOperator {\arcsech }{arcsech}\) \(\DeclareMathOperator {\arccsch }{arcCsch}\) \(\DeclareMathOperator {\arccoth }{arcCoth}\) \(\def \re {\textup {Re}}\) \(\def \im {\textup {Im}}\) \(\newcommand {\up }{\uppi }\) \(\newcommand {\ut }{\uptheta }\) \(\newcommand {\uw }{\upomega }\) \(\newcommand {\uph }{\upphi }\) \(\newcommand {\uvph }{\upvarphi }\) \(\polylongdiv \)

Bibliography

  • K. F. Riley, M. P. Hobson, and S. J. Bence. Mathematical methods for physics and engineering. Cambridge University Press, third edition, 2006. ISBN 9780521679718.

  • D. Jordan and P. Smith. Mathematical Techniques: An Introduction for the Engineering, Physical, and Mathematical Sciences. OUP Oxford, 2008. ISBN 9780199282012.

  • R. Lissamen and E. West. Mei Numerical Methods. MEI Structured Mathematics (a+AS Level) Series. Hodder Education Group, 2004. ISBN 9780340814611.

  • P Dawkins. Paul’s Online Notes: Calculus I, 2025a. URL https://tutorial.math.lamar.edu/Classes/CalcI/CalcI.aspx. Last accessed 5th June 2025.

  • Collins. asymptotically. In Collinsdictionary.com. URL https://www.collinsdictionary.com/dictionary/english/asymptotically. Accessed 24th July 2025.

  • P Dawkins. Paul’s Online Notes: Algebra, 2025b. URL https://tutorial.math.lamar.edu/Classes/Alg/Alg.aspx. Last accessed 6th October 2025.