STM0005 Physics: Lecture Notes
Chapter 12 Formula Sheet
The formulas and symbols given here are the ones that you will be given at the front of your exam paper. If there are formulas that are not included here then these are ones that you will need to learn for the exam.
Acceleration due to gravity \(g=9.8\text {m/s}^{2}\).
Algebraic equations
The quadratic formula:
\(\seteqnumber{0}{12.}{0}\)\begin{equation*} x=\frac {-b\pm \sqrt {b^{2}-4ac}}{2a} \end{equation*}
Geometrical Equations
Arc length \(=r\uptheta \)
Circumference of a circle \(=2\uppi r\)
Area of a circle \(=\uppi r^{2}\)
Curved surface area of a cylinder \(=2\uppi r h\)
Area of a sphere \(=4\uppi r^{2}\)
Volume of a sphere \(=\frac {4}{3}\uppi r^{3}\)
Mechanics Equations
Velocity and acceleration
\(\seteqnumber{0}{12.}{0}\)\begin{equation*} v=\frac {\Delta s}{\Delta t}, \qquad a=\frac {\Delta v}{\Delta t} \end{equation*}
Equations of motion
\(\seteqnumber{0}{12.}{0}\)\begin{align*} v&=u+at, \qquad s=\left (\frac {u+v}{2}\right )t,\\ v^{2}&=u^{2}+2as, \qquad s=ut+\frac {1}{2}at^{2} \end{align*}
Force
\(\seteqnumber{0}{12.}{0}\)\begin{equation*} F=ma, \qquad F=\frac {\Delta \left (mv\right )}{\Delta t} \end{equation*}
Impulse
\(\seteqnumber{0}{12.}{0}\)\begin{equation*} F\Delta t =\Delta \left (mv\right ) \end{equation*}
Work, energy, and power
\(\seteqnumber{0}{12.}{0}\)\begin{align*} W&=Fs\cos \uptheta , \qquad E_{K}=\frac {1}{2}mv^{2},\\ \Delta E_{P}&=mg\Delta h, \qquad P=\frac {\Delta W}{\Delta t},\\ P&=Fv, \qquad \text {Efficiency}=\epsilon =\frac {\text {useful output power}}{\text {input power}} \end{align*}
Circular Motion Equations
Angular velocity
\(\seteqnumber{0}{12.}{0}\)\begin{equation*} \uw =\frac {v}{r}, \qquad \upomega =2\up f \end{equation*}
Centripetal acceleration
\(\seteqnumber{0}{12.}{0}\)\begin{equation*} a=\frac {v^{2}}{r}=\upomega ^{2}r \end{equation*}
Centripetal force
\(\seteqnumber{0}{12.}{0}\)\begin{equation*} F=\frac {mv^{2}}{r}=m\upomega ^{2}r \end{equation*}
Simple Harmonic Motion Equations
Acceleration
\(\seteqnumber{0}{12.}{0}\)\begin{equation*} a=-\upomega ^{2}x \end{equation*}
Displacement
\(\seteqnumber{0}{12.}{0}\)\begin{equation*} x=A\cos \left (\upomega t+\upphi \right ) \end{equation*}
Speed
\(\seteqnumber{0}{12.}{0}\)\begin{equation*} v=\pm \upomega \sqrt {A^{2}-x^{2}} \end{equation*}
Maximum speed
\(\seteqnumber{0}{12.}{0}\)\begin{equation*} v_{\text {max}}=\upomega A \end{equation*}
Maximum acceleration
\(\seteqnumber{0}{12.}{0}\)\begin{equation*} a_{\text {max}}=\upomega ^{2}A \end{equation*}
Hooke’s law
\(\seteqnumber{0}{12.}{0}\)\begin{equation*} F=-kx \end{equation*}
Mass spring system
\(\seteqnumber{0}{12.}{0}\)\begin{equation*} T=2\uppi \sqrt {\frac {m}{k}} \end{equation*}
Simple pendulum
\(\seteqnumber{0}{12.}{0}\)\begin{equation*} T=2\uppi \sqrt {\frac {l}{g}} \end{equation*}
Electrical circuits Equations
Current and potential difference
\(\seteqnumber{0}{12.}{0}\)\begin{equation*} I=\frac {\Delta Q}{\Delta t}, \quad V=\frac {W}{Q}, \quad V=IR \end{equation*}
Resistors in series
\(\seteqnumber{0}{12.}{0}\)\begin{equation*} R_{T}=R_{1}+R_{2}+R_{3}+\dots \end{equation*}
Resistors in parallel
\(\seteqnumber{0}{12.}{0}\)\begin{equation*} \frac {1}{R_{T}}=\frac {1}{R_{1}}+\frac {1}{R_{2}}+\frac {1}{R_{3}}+\dots \end{equation*}
Power
\(\seteqnumber{0}{12.}{0}\)\begin{equation*} P=IV=I^{2}R=\frac {V^{2}}{R} \end{equation*}
Capacitance
\(\seteqnumber{0}{12.}{0}\)\begin{equation*} C=\frac {Q}{V} \end{equation*}
Bibliography
-
Ananthaswamy, A. (2020), Through Two Doors at Once: The Elegant Experiment that Captures the Enigma of our Quantum Reality, Duckworth Books.
-
Breithaupt, J. (2016a), AQA Physics: A Level, OUP Oxford.
-
Breithaupt, J. (2016b), AQA Physics: A Level Year 1 and AS, OUP Oxford.
-
Close, F. (2023), Particle Physics: A Very Short Introduction, Very Short Introductions Series, Oxford University Press.
-
Czerski, H. (2016), Storm in a Teacup: The Physics of Everyday Life, Bantam Press.
-
Feynman, R., Gottlieb, M. & Leighton, R. (2013), Feynman’s Tips on Physics: Reflections, Advice, Insights, Practice, Basic Books.
-
Feynman, R., Leighton, R. & Sands, M. (2011a), The Feynman Lectures on Physics, Vol. I: The New Millennium Edition: Mainly Mechanics, Radiation, and Heat, The Feynman Lectures on Physics, Basic Books.
-
Feynman, R., Leighton, R. & Sands, M. (2011b), The Feynman Lectures on Physics, Vol. II: The New Millennium Edition: Mainly Electromagnetism and Matter, The Feynman Lectures on Physics, Basic Books.
-
Feynman, R., Leighton, R. & Sands, M. (2011c), The Feynman Lectures on Physics, Vol. III: The New Millennium Edition: Quantum Mechanics, The Feynman Lectures on Physics, Basic Books.
-
Garrett, E. (2015), Essential Maths Skills for A-level Physics: Study Notes, Examples & Practice Questions, CGP Group.
-
Hrabovsky, G. & Susskind, L. (2020), Classical Mechanics: The Theoretical Minimum, Penguin Books Limited.
-
Mansfield, M. & O’Sullivan, C. (2020), Understanding Physics, Wiley.
-
Rae, A. (2005), Quantum Physics: A Beginner’s Guide, Beginner’s Guides, Oneworld Publications.
-
Sadler, A. & Thorning, D. (1996), Understanding Mechanics, Oxford University Press.
-
Vincent, J. (2022), Beyond Measure: The Hidden History of Measurement, Faber & Faber.
-
Young, H. & Freedman, R. (2019), University Physics with Modern Physics, Global Edition, Pearson Education.