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1 Introduction

These rough lecture notes for PY4126 Radiative processes. This part of the course consists
of 18 of the 24 lectures and is based on [1], with some additions from [2, 3, 4]. The standard
reference for all things electrodynamics is [5], at a couple of points we will encounter arguments
from here but for the most part it is a bit more advanced than the level of this course. Sections
with a ∗ next to them were not lectured and a included for completeness.

1.1 Notation and units conventions

Throughout the course we take the convention of denoting vector quantities with an overhead
arrow, e.g. ~r for the position vector. We also follow the conventions of [2] and denote the
Cartesian basis vectors as x̂, ŷ, ẑ to bring them in line with the convention for other coordinate
systems. This means that in Cartesian coordinates the position vector is ~r = xx̂ + yŷ + zẑ.
In Appendix C we review some of the necessary vector calculus for the course and make some
comments on the coordinate systems that we need to be aware of.

In this course we follow [2] and use SI , or mks, units. Many books, including [1] and [5] use
Gaussian units, sometimes known as cgs or centimetres-grams-seconds. Gaussian are probably
still the standard unit system for books and courses in electrodynamics. However, many people
now follow the example of [2] and teach them exclusively in SI units. There is an appendix in
[2] which explains how to transform between the two systems I replicate some of that here so
that you can have an easier time of comparing to some of the other books. The main reason
for working in Gaussian units is that it simplifies some expressions such as Coulomb’s law:

FC =
q1q2

|~r1 − ~r2|3
(~r1 − ~r2) in Gaussian, (1.1)

FC =
q1q2

4πε0|~r1 − ~r2|3
(~r1 − ~r2) in SI. (1.2)

In [2] The notation r = ~r1 − ~r2 is used for the distance between a source point ~r2 and a field
point ~r1. We will not use that notation but will sometimes write ~r12 = ~r1 − ~r2 for the relative
position vector.

1.2 Correspondence between lectures and these notes

Lectures 6,7 and 8 covered the material in Section. 2. Lectures 9 - 12 covered the material
in Section. 3, the start of lecture 22 covered the material on radiation reaction. Lectures 13,
14, 17 and 18 covered Section. 4.1. The end of lecture 14 and lecture 15 covered Section. 4.2.
Lecture 16 covered the material on polarisation in Section. 2. Lectures 19, 20 and the first part
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of 21 covered Section. 5 on propagation of em waves through a plasma. Finally, most of lecture
21 sketched out absorption and emission following Section. 6.

2 Basic Theory of Radiation Fields

2.1 Maxwell’s equations and electromagnetic flux

For the most part this course studies the electromagnetic properties of non-relativistic particles.
The central objects are thus the electric and magnetic fields, ~E(~r, t) and ~B(~r, t) respectively.
They are observed through their action on a particle of charge q, in other words through the
Lorentz force:

~F = q
(
~E + ~v × ~B

)
. (2.1)

The factor of the speed of light in the magnetic field term is due to working in Gaussian units.
The rate of work done by the fields on a particle of charge q is

~v · ~F = q~v · ~E, (2.2)

since ~v ·
(
~v × ~B

)
= 0. We can write this in terms of the mechanical work for a non relativistic

particle. Using Newton’s Second law F = md~v
dt

we have

q~v · ~E =
d

dt

(
1

2
m~v2

)
=

d

dt
(Umech) . (2.3)

From the Lorentz force law we see that the total force density, the force per unit volume, is

F = ρ ~E + ~J × ~B. (2.4)

The two new quantities ρ and ~J are the charge and current densities respectively. They are
usually defined as

Q =
∑
i

qi =

∫
ρdV, (2.5)

Q =

∫ t2

t1

∫
Σ

~J · n̂dAdt, (2.6)

we could also write ~J = ρ~v. In [1] the inverse relations are given:

ρ = lim
∆V→0

Q

∆V
, (2.7)

~J = lim
∆V→0

∑
i qi~vi

∆V
, (2.8)

with ∆V a volume element. Here the sum is over the constituent particles of charge qi moving
with velocity ~vi. The rate of work done by the field per unit volume is then

1

∆V

∑
i

qi~vi · ~E = ~J · ~E. (2.9)
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This is nothing but the rate of change of mechanical energy from Eq. (2.3),

dUmech

dt
= ~J · ~E. (2.10)

The fundamental equations of electromagnetism are Maxwell’s equations. Written in their
differential form they relate ~E, ~B, ρ and ~J . In SI units they are

∇ · ~D = ρ, ∇ · ~B = 0,

∇× ~E = −∂
~B

∂t
, ∇× ~H = ~J +

∂ ~D

∂t
.

(2.11)

The vector fields ~D and ~H are the electric and magnetic “excitation” as they are induced by
the ~E and ~B fields in a medium. They are related through the constitutive relations

~D = ε ~E, (2.12)

~B = µ ~H, (2.13)

where ε, µ are respectively the dielectric constant (permittivity) and magnetic permeability of
the medium2. In the absence of dielectric or permeable media ε = ε0, µ = µ0. In older texts
the fields have different names as summarised in Table 1.

Field Traditional name More “modern” name
~E Electric field strength Electric field strength
~B Magnetic induction Magnetic field strength
~D Electric displacement Electric excitation
~H Magnetic field strength Magnetic excitation

Table 1: Traditional and more modern names for the four fields that appear in Maxwell’s
equations.

Sometimes ρ and ~J are given the subscript f to signify that they are the charge density and the
current density due to free charges. This is to give the distinction between charges that are able
to move freely through the medium and the charges that are part of the medium. Maxwell’s
equations can be alternatively written as

∇ · ~E =
1

ε0

ρ, ∇ · ~B = 0,

∇× ~E = −∂
~B

∂t
, ∇× ~B = µ0

~J + µ0ε0
∂ ~E

∂t
,

(2.14)

where now ρ and ~J refer to all of the charges and currents present, not just those that are free.

2We can write these as ε = ε0εr, µ = µ0µr. Here ε0, µ0 are the permittivity and permeability of free space,
or vacuum, while the symbols with the label r are due to the medium. Recall that ε0 and µ0 are related to the
speed of light as c = 1√

ε0µ0
. The label r stands for relative, and these quanitites are related to the electric and

magnetic susceptibility through χe = εr − 1, χm = µr − 1.
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A direct consequence of Maxwell’s equations is the conservation of electric charge, also known
as the continuity equation:

∂ρ

∂t
+∇ · ~J = 0. (2.15)

This follows by taking the divergence of the equation for ~H, and recalling that the divergence

of a curl vanishes, ∇ ·
(
∇× ~H

)
= 0.

The energy density and the energy flux, or Poynting vector, can now be defined. Start from
the work done per unit volume and apply Maxwell’s equations

~J · ~E =

(
∇× ~H − ∂ ~D

∂t

)
· ~E, rewriting of Maxwell’s equation for ~H

=

(
~E ·
(
∇× ~H

)
− ~E · ∂

~D

∂t

)

=

(
~H ·
(
∇× ~E

)
−∇ ·

(
~E × ~H

)
− ~E · ∂

~D

∂t

)

=

(
− ~H · ∂

~B

∂t
−∇ ·

(
~E × ~H

)
− ~E · ∂

~D

∂t

)
, using Maxwell’s equation for ~E

=

(
−
~B

µ
· ∂

~B

∂t
− ~E · ∂ε

~E

∂t
−∇ ·

(
~E × ~H

))
.

Going between the second and third line we used the vector identity

∇ ·
(
~E × ~H

)
= ~H ·

(
∇× ~E

)
− ~E ·

(
∇× ~H

)
. (2.16)

Finally if ε, µ are constant in time we arrive at

−∇ ·
(
~E × ~H

)
= ~J · ~E +

1

2

∂

∂t

[
ε ~E2 +

~B2

µ

]
. (2.17)

This is known as Poynting’s theorem in differential form. In words it says that: the rate of
change of mechanical energy density, ~J · ~E, plus the rate of change of field energy density,
1
2
∂
∂t

[
ε ~E2 +

~B2

µ

]
, equals the negative divergence of the field energy flux, −∇ ·

(
~E × ~H

)
. The

field energy flux is known as the Poynting vector,

~S = ~E × ~H. (2.18)

This is actually one of four possible Poynting vectors, depending on the context and how we
split the energy up between the matter energy density and the field energy density the other
choices can become relevant. The electromagnetic field energy density is written as

Ufield =
1

2

[
ε ~E2 +

~B2

µ

]
= UE + UB, (2.19)
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it contains information about the matter the field is interacting with through ε and µ. If all
of the matter contribution is accounted for in the mechanical energy density then we only see
the fields ~E and ~B, it is like we are working in vacuum. In this case ~J → conduction current +
induced molecular current, and ~S → 1

µ0
~E × ~B one of the other choices for the Poynting vector.

This is the approach taken in Chapter 8 of [2]. This grouping of the energy into matter and
field contributions is arbitrary, it is the total energy that is conserved!

There is an integral form of Poynting’s theorem found by integrating Eq. (2.17) and using the
Divergence theorem:

−
∫

Σ

~S · d ~A = −
∫
V

∇ · ~S dV

=

∫
V

~J · ~E dV +
d

dt

∫
V

(
ε ~E2 +

~B2

µ

2

)
dV,

where Σ is the surface which forms the boundary to the volume V . This gives the relation

d

dt
E =

d

dt
(Umech + Ufield) = −

∫
Σ

~S · d ~A. (2.20)

Again this tells us that the rate of change of the energy density is given by the flux through
the surface at the boundary.

The microscopic momentum density ~g and angular momentum density, ~L, are related to the
flux density and are given by

~g =
1

c
~E × ~B ~L = ~r × ~g. (2.21)

We have been talking about charges in a volume in three dimensions V ⊂ R3, with boundary
the surface Σ. The prototypical example is to consider a the volume as the interior of a ball.
Then Σ = S2 is the boundary, the surface of the ball known as the two-sphere. What happens
to the flux −

∫
Σ
~S · d ~A when the radius of the ball becomes very large, r →∞?

Recall from earlier E&M that for static situations the electric and magnetic fields have the
asymptotic behaviour

lim
r→∞

~E, ~B ∼ 1

r2
, (2.22)

thus the Poynting vector behaves as

lim
r→∞

~S ∼ 1

r4
(2.23)

and the flux vanishes in the large r limit. When the fields are time dependent this is no longer
the case. Time dependent ~E, ~B fields can fall off as 1

r
which implies that limr→∞ ~S ∼ 1

r2
leading

to non zero flux. This contribution of the flux to dE
dt

is due to radiation. It is conventional to

refer to the 1
r

decaying pieces of the ~E and ~B fields as the radiation field.
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2.2 Planar electromagnetic waves

The vacuum Maxwell’s equations are

∇ · ~E = 0, ∇ · ~B = 0,

∇× ~E = −∂
~B

∂t
, ∇× ~B =

1

c2

∂ ~E

∂t
.

(2.24)

These are invariant under the change3
(
~E, ~B

)
7→
(
~B,− ~E

)
.

In this case Maxwell’s equations can be reduced to two wave equations, leading to travelling
wave solutions for the fields. To do this consider the curl of the third of Maxwell’s equations.

The left hand side becomes: ∇×
(
∇× ~E

)
= ∇

(
∇ · ~E

)
−∇2 ~E, while the right hand side is

−∂∇× ~B
∂t

= − 1
c2
∂2 ~E
∂t2

. Putting this together leads to

∇2 ~E − 1

c2

∂2 ~E

∂t2
, (2.25)

the analogous equation holds for ~B,

∇2 ~B − 1

c2

∂2 ~B

∂t2
, . (2.26)

In Cartesian coordinates4 these have plane wave solutions

~E = â1E0e
i(~k·~r−ωt), (2.27)

~B = â2B0e
i(~k·~r−ωt), (2.28)

with: E0, B0 complex constants, â1 and â2 unit vectors giving the direction of oscillation, and
~k, ω the wave vector and the frequency. The wave vector can also be written in terms of the
wave number, k and the direction of propagation, n̂, as ~k = kn̂. As the equations are linear we
can consider superpositions of plane waves to construct more general solutions. Substituting
the plane waves into Maxwell’s equations they are reduced to

~k · â1E0 = 0, ~k · â2B0 = 0, (2.29)

~k × â1E0 = ωâ2B0, ~k × â2B0 = − ω
c2
â1E0. (2.30)

A consequence of Eq. (2.29) is that â1 and â2 are transverse to the direction of propagation ~k.
Then Eq. (2.30) implies that â1, â2, n̂ form a right handed bases, in other words n̂ × â1 = â2

3This is known as electromagnetic duality and is a big topic in its own right. For us it just reflects that fact
that ~E and ~B have the same functional form and are just vector fields propagating in the same direction and
oscillating with the same amplitude.

4In Cartesian coordinates ∇2 ~E = ∆Exx̂+ ∆Ey ŷ + ∆Ez ẑ with ∆ = ∇ · ∇ the Laplacian. This equation for
~E then becomes a wave equation in each component. For other coordinate systems it is not so easy to make

sense of ∇2 ~E, in fact it is defined through the identity ∇×
(
∇× ~E

)
= ∇

(
∇ · ~E

)
−∇2 ~E and called the vector

Laplacian.
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and its cyclic permutations hold. These properties imply that E0 = ω
k
B0 and B0 = ω

c2k
E0 which

combine to give E0 =
(
ω
kc

)2
E0. This implies that ω2 = c2k2 or, if k, ω are positive,

ω = ck. (2.31)

This relationship between the frequency and the wave number is known as the dispersion
relation. There are two immediate consequences of this analysis. The first is that E0 = B0.
The second is that the phase velocity of the wave propagation is

vph =
ω

k
= c (2.32)

so the waves travel at the speed of light. We can also compute the group velocity and find that
it is also the speed of light, vgr = dω

dk
= c.

As both ~E and ~B vary sinusoidally in time, the Poynting vector and the energy density also
fluctuate. The way to deal with this is to work with the time average of quantities. Using the
result of Problem B.1 that

〈Re(A)Re(B)〉 =
1

2
Re (AB∗) , (2.33)

and recalling that ~E and ~B are real vector fields we find

〈~S〉 =
1

2µ0

Re(E0B
∗
0)n̂ =

|E0|2

2cµ0

n̂ =
c

2µ0

|B0|2n̂. (2.34)

Similarly the field energy density satisfies

〈Ufield〉 =
1

4

(
ε0|E0|2 + µ0|B0|2

)
=

1

2
ε0|E0|2 =

1

2

|B0|2

µ0

, (2.35)

where we use that B0 = 1
c
E0 and that c2 = ε0µ0. This implies that the velocity of the energy

flow, the ratio of flux to field energy density, is

〈S〉
〈Ufield〉

=
1

cε0µ0

= c, (2.36)

where 〈S〉 = 1
2cµ0
|E0|2 is the time average of the magnitude of the Poynting vector.

These results are for the propagation of electromagnetic waves in vacuum. Formally the same
results hold in a medium, e.g. when µ, ε 6= 1 but are still constant. In real materials µ, ε are
modified in response to the presence of the electromagnetic fields and depend on the frequency
of the field, ω. This means that care is needed. We may return to this when we discuss plasmas
later in the course.

2.3 Polarisation and Stokes parameters

The plane wave solutions in Eq. (2.27) and Eq. (2.28) describe monochromatic (one frequency)
plane waves. They are called linearly polarised, with â1, â2 sometimes called the polarisation
vector of the field. This is because ~E oscillates in the â1 direction while propagating in the ~k
direction. The plane defined by â1, ~k is known as the plane of polarisation.
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A more general description of polarisation follows from considering the superposition of plane
waves (with the same frequency),

~E = (x̂E1 + ŷE2) e−iωt, (2.37)

where we are considering the field at a single spatial point and have decomposed â1E in terms
of x̂E1 + ŷE2. Here E1 = E1e

iφ1 , E2 = E2e
iφ2 are the modulus argument decomposition of the

prefactors. As usual the physical field is the real part of ~E, this has components

Ex = E1 cos (ωt− φ1) , (2.38)

Ey = E2 cos (ωt− φ2) . (2.39)

The components thus oscillate with different amplitudes and frequencies5. In the x̂, ŷ plane the
tip of ~E traces out an ellipse. Thus the field is called elliptically polarised.

The general equation for an ellipse with principal axes x′, y′ and semi-major, semi minor axes
a, b is (

Ex′

a

)2

+

(
Ey′

b

)2

= 1. (2.40)

This is solved by letting (
Ex′

a

)2

= cos2 (ωt) , (2.41)(
Ey′

b

)2

= sin2 (ωt) . (2.42)

We thus have a choice when taking the square root as to whether we take Ex′ , Ey′ to be the

positive or negative square root. If we make the same choice for both we find that ~E traces out
the ellipse counter clockwise,

Ex′ = a cos (ωt) , (2.43)

Ey′ = b sin (ωt) , (2.44)

if we take the opposite sign square root then ~E ′ traces out the ellipse clockwise,

Ex′ = a cos (ωt) , (2.45)

Ey′ = −b sin (ωt) . (2.46)

Include figure of an ellipse.

Decomposing a and b in terms of a radius and an angle as a = E0 cos β, b = E0 sin β. The
standard convention is that when 0 < β < π

2
~E ′ rotates clockwise as t increases:

Ex′ = E0 cos β cos (ωt) , (2.47)

Ey′ = −E0 sin β sin (ωt) , (2.48)

5This can become more complicated if E and φ depend on time. The fields would no longer be elliptically
polarised and are called partially elliptically polarised.
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and counter clockwise when −π
2
< β < 0:

Ex′ = E0 cos β cos (ωt) , (2.49)

Ey′ = E0 sin β sin (ωt) . (2.50)

The case of clockwise rotation is called right handed elliptic polarisation, and the counter
clockwise case is called left handed elliptic polarisation.

Special cases: There are a few special cases that we need to be aware of.

� β = ±π
4
. This implies that sin β = ∓ 1√

2
and cos β = 1√

2
, components are

Ex′ =
E0√

2
cos (ωt) , (2.51)

Ey′ = ∓ E0√
2

sin (ωt) . (2.52)

This traces out a circle and the wave is called circularly polarised.

� β = 0. sin β = 0 and cos β = 1 so that Ey′ = 0 and Ex′ = E0 cosωt giving a linearly
polarised wave.

� β = ±π
2
. This is again linearly polarised, since sin β = ∓1,cos β = 0 which implies that

Ey′ = ∓E0 sinωt and Ex′ = 0.

If we consider a more general situation where the principle axes of the ellipse are tilted by an
angle χ relative to the axes x and y. Include figure of rotated ellipse. We thus have that

Ex = Ex′ cosχ− Ey′ sinχ = E0 (cos β cosχ cosωt+ sin β sinχ sinωt) , (2.53)

Ey = Ey′ cosχ+ Ex′ sinχ = E0 (cos β sinχ cosωt− sin β cosχ sinωt) . (2.54)

Comparison with the expressions in Eqs. (2.38) and (2.39) we have that:

E1 cosφ1 = E0 cos β cosχ, (2.55)

E1 sinφ1 = E0 sin β sinχ, (2.56)

E2 cosφ2 = E0 cos β sinχ, (2.57)

E2 sinφ2 = −E0 sin β cosχ. (2.58)

The parameters E1, E2, φ1, φ2 describe the physical fields, while E0, β, χ describe the ellipse, and
hence the polarisation.

It is convenient to introduce the Stokes parameters

I = E2
1 + E2

2 = E2
0 , (2.59)

Q = E2
1 − E2

2 = E2
0 cos 2β cos 2χ, (2.60)

U = 2E1E2 cos (φ1 − φ2) = E2
0 cos 2β sin 2χ, (2.61)

V = 2E1E2 sin (φ1 − φ2) = E2
0 sin 2β. (2.62)
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In terms of the STokes parameters we have the following quantities: the intensity

I = E2
0 , (2.63)

the degree of circular polarisation
V

I
= sin 2β, (2.64)

and the angle of linear polarisation χ

U

Q
= tan 2χ. (2.65)

Returning to the special cases from above we see that

� For β = 0,±π
2

we have sin 2β = 0 so V = 0. The case of purely linear polarisation.

� For β = ±π
4

sin 2β = ±1 and V = ±I, the case of pure circular polarisation.

For elliptic polarisation the Stokes parameters are related through

I2 = Q2 + U2 + V 2. (2.66)

For the partially elliptically polarised case, mentioned above when E and φ are time dependent,
they satisfy

I2 > Q2 + U2 + V 2. (2.67)

The degree of polarisation, the percentage of the wave that is elliptically polarised, is defined
as

Π =

√
Q2 + U2 + V 2

I
. (2.68)

The wave is unpolarised when Q = U = V = 0. There is more on this in [1].

2.4 Electromagnetic potentials

Considering the microscopic form of Maxwell’s equations, Eq. (2.14) for ~E and ~B, we can

express the electric and magnetic fields in terms of a scalar and vector potential, φ(~r, t), ~A(~r, t).
This gives a simpler formalism where we have a general method to solve Maxwell’s equations.

Recall that the divergence of a curl is zero6 so ∇ · ~B = 0 implies that ~B = ∇ × ~A, for some
vector field ~A called the vector potential. The Equation for ∇× ~E then becomes

∇×

(
~E +

∂ ~A

∂t

)
= 0 (2.69)

6The converse is true in flat space, if we were working on a sphere or a torus then while ∇ ·
(
∇× ~A

)
= 0,

∇ · ~B = 0 does not imply that ~B is the curl of some vector potential ~A.
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which implies that ~E + ∂ ~A
∂t

= −∇φ, recall that the curl of a gradient is zero. This means that

in terms of φ and ~A the electric and magnetic field are given by

~B = ∇× ~A, (2.70)

~E = −∇φ− ∂ ~A

∂t
. (2.71)

This expression for the fields in terms of the potentials automatically solve two of Maxwell’s
equations. What are the consequences of the other two? Consider

ρ

ε0

= ∇ · ~E = −
[
∇2φ+

∂

∂t

(
∇ · ~A

)]
, (2.72)

and

µ0
~J = ∇× ~B − 1

c2

∂ ~E

∂t

= ∇×
(
∇× ~A

)
− 1

c2

∂

∂t

(
−∇φ− ∂ ~A

∂t

)

= −∇2 ~A+
1

c2

∂2 ~A

∂t2
+∇

(
∇ · ~A+

1

c2

∂φ

∂t

)
where in the last line the identity ∇×

(
∇× ~A

)
= −∇2 ~A+∇

(
∇ · ~A

)
. The potentials are not

uniquely determined, they can be modified by an arbitrary scalar field in such a way that the
fields ~E and ~B are left unchanged:

~A 7→ ~A+∇ψ (2.73)

φ 7→ φ− ∂ψ

∂t
(2.74)

and
(
~E, ~B

)
7→
(
~E, ~B

)
. The transformations in Eq. (2.73) and Eq. (2.74) are called gauge

transformations and electromagnetism is called a gauge theory. Gauge theories show up in
many areas of physics and Maxwell’s theory of electromagnetism is the prototypical example.

As ψ is arbitrary it can be chosen in such a way that the equations for ~A, φ simplify. In other
words by choosing ψ we can specify an equation that ~A, φ solve. Two of the most common
examples are the Coulomb gauge ∇ · ~A = 0 and the Lorentz gauge

∇ · ~A+
1

c2

∂φ

∂t
= 0. (2.75)

Applying the Lorentz gauge condition the equations for ~A, φ become

∇2φ− 1

c2

∂2φ

∂t2
= − ρ

ε0

, (2.76)

∇2 ~A− 1

c2

∂2 ~A

∂t2
= −µ0

~J. (2.77)
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These are both wave equations with a source term on the right hand side. In fact often they

are written in terms of the d’Alembert operator �φ =
(

1
c2

∂2

∂t2
−∇2

)
φ. These equations can be

solved in terms of the Green’s functions of the differential operator7, the solution G(~r−~r′, t−t′)
to �G(~r − ~r′, t− t′) = −4πδ(~r − ~r′, t− t′). The solutions are given by the retarded potentials

φ(~r, t) =
1

4πε0

∫
ρ(~r′, tr)

|~r − ~r′|
d3~r′, (2.78)

~A(~r, t) =
µ0

4π

∫ ~A(~r′, tr)

|~r − ~r′|
d3~r′, (2.79)

where tr = t − 1
c
|~r − ~r′| is the retarded time. In other words the field at position ~r at time t

depends on the source at position ~r′ at time tr. With t− tr the time that it takes light to travel
between ~r and ~r′.

The method to solve Maxwell’s equations is the following: pick a gauge for φ, ~A, solve for
the retarded potentials using the Green’s function method, then construct ~E and ~B from the
potentials. This approach is useful in many areas of physics when we need to solve a differential
equation with a source term.

3 Radiation from Moving Charges

3.1 Liénard–Wiechert potentials

In the previous section we saw how to solve Maxwell’s equations in terms of the scalar and
vector potentials. Now we want to use the retarded potentials, Eq. 2.78 and Eq. (2.79), to find
the radiation component of the fields for a moving charg.

To achieve this goal consider a charge, q, moving along the trajectory ~r = ~r0(t) with velocity
~u(t) = ~̇r0(t). The charge and current densities are

ρ(~r, t) = qδ3 (~r − ~r0(t)) , (3.1)

~J(~r, t) = q~u(t)δ3 (~r − ~r0(t)) , (3.2)

where δ3 (~r − ~r0(t)) , is the three dimensional Dirac delta function. The presence of the delta
function localises the charge and current to the trajectory of the particle8. The charge and

7The Green’s function is G(~r − ~r′, t − t′) =
δ

(
t′−t+ |~r−

~r′|
c

)
|~r−~r′|

. The solution φ is then given by integrating the

source times the Green’s function over all space and time, φ(~r, t) =
∫ (∫

ρ
(
~r′, t′

)
G(~r − ~r′, t− t′)dt′

)
d3~r′. In

the main text we have carried out the time integral which the Dirac delta function localises to the retarded time

tr = t− |~r−~r
′|

c . In Section. 3 we will use the full expression and perform the ~r′ integral first.
8These are sometimes known as the world line charge and current densities, this is because they are localised

to the world line of the charge. If you have not come across the concept of a world line in special relativity it
is just a fancy name for the trajectory of a particle in space-time.
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current are found by integrating the densities over a three dimensional volume:

q =

∫
ρ(~r, t)d3~r, (3.3)

q~u =

∫
~J(~r, t)d3~r. (3.4)

We can use Eq. (3.1) and Eq. (3.2) to compute the retarded potentials due to the moving
charge. Once we know the potentials we can then find the electric and magnetic fields due to
the charge and identify the radiation component. In this section we will write the expressions
for the potentials in terms of the Green’s function of the d’Alembert operator

G(~r − ~r′, t− t′) =
δ
(
t′ − t+ |~r−~r′|

c

)
|~r − ~r′|

(3.5)

The scalar potential is

φ(~r, t) =
1

4πε0

∫ ∫ ρ
(
~r′, t′

) δ (t′ − t+ |~r−~r′|
c

)
|~r − ~r′|

dt′

 d3~r′, (3.6)

using ρ(~r, t) = qδ3 (~r − ~r0(t)) the ~r′ integral is localised to ~r0(t′),

φ(~r, t) =
1

4πε0

∫
qδ (t′ − tr)
|~r − ~r0(t′)|

dt′ (3.7)

Before performing this integral it is convenient to introduce some notation:

~R(t′) = ~r − ~r0(t′), (3.8)

R(t′) = |~R(t′)|. (3.9)

Using this notation leads to

φ(~r, t) =
q

4πε0

∫ δ
(
t′ − t+ R(t′)

c

)
R(t′)

dt′, (3.10)

~A(~r, t) =
qµ0

4π

∫
u(t′)

δ
(
t′ − t+ R(t′)

c

)
R(t′)

dt′. (3.11)

These integrals can be massaged a bit further to make them as simple as possible to carry
out. The argument of the delta function vanishes when t′ − t + R(t′)

c
= 0 this is when t′ = tr

the retarded time. This can be rewritten as R(tr) = c(t − tr). Now make the substitution

t′′ = t′−t+R(t′)
c

which implies that the dt′′ =
(

1 + Ṙ(t′)
c

)
dt′. Differentiating R2(t′) = ~R(t′)· ~R(t′)

leads to R(t′)Ṙ(t′) = −~R(t′) · ~u(t′) since ~u(t′) = ~̇r0(t′) = − d
dt′

(~r − ~r0(t′)). Next introduce the
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unit vector n̂ =
~R
r
. Putting this together the measure becomes

dt′′ =

(
1 +

Ṙ(t′)

c

)
dt′

=

(
1−

~R(t′)

R
· ~u(t′)

)
dt′

=

(
1− 1

c
n̂(t′) · ~u(t′)

)
dt′

=: κ(t′)dt′.

This leads to the expression for the scalar potential being

φ(~r, t) =
q

4πε0

∫
δ(t′′)

dt′′

R(t′)κ(t′)
, (3.12)

the delta function localises this to t′′ = 0, which is equivalent to t′ = tr. Thus the scalar
potential is

φ(~r, t) =
q

4πε0

1

R(tr)κ(tR)
. (3.13)

A similar computation leads to

~A(~r, t) =
qµ0

4π

~u(tr)

R(tr)κ(tR)
=
~u

c2
φ(~r, t). (3.14)

These are known as the Liénard–Wiechert potentials. The fact that the charge is moving has
two important consequences in contrast to the static case:

1. The factor κ =
(
1− 1

c
n̂(t′) · ~u(t′)

)
does not appear in the static case. It becomes more

important the nearer the particle’s velocity is to the speed of light c.

2. The terms in the potential are all evaluated at tr rather than at t.

The finiteness of the speed of light is the reason that the potential is evaluated at tr. This is
because the values of the potential and field at position ~r at time t depend on what the charge
is doing at position ~r0(tr) since it takes light t − tr to travel between the two positions. As tr
has an implicit r dependence care needs to be taken when differentiating φ, ~A to compute the
electric and magnetic fields.

3.2 Radiation fields

Identifying the radiation component of the field involves a length computation carried out in
both [2, 5]. Some of the details are worth seeing so a brief discussion of the calculation is
presented here.
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Again imagine a charge q moving with velocity ~u = ~̇r0(tr) and acceleration ~̇u = ~̈r0(tr). Let
~β = ~u

c
which means that κ = 1− n̂ · ~β. The key feature is that tr is differentiated:

∇tr = − 1

cκ
n̂, (3.15)

∂tr
∂t

=
1

κ
. (3.16)

Checking this is a worthwhile endeavour for interested student. Armed with these derivatives
we can compute the gradient of Eq. (3.13) and the time derivative of Eq. (3.14). Starting with
φ:

∇φ = − q

4πε0

1

R2κ2
∇ (Rκ) ,

= − q

4πε0

1

R2κ2
∇
(
R− ~R · ~β

)
,

= − q

4πε0

1

R2κ2

(
−c∇tr −∇

(
~R · ~β

))
, using R = c (t− tr).

Next use the product rule for the gradient of a scalar product,

∇
(
~R · ~β

)
=
(
~R · ∇

)
~β +

(
~β · ∇

)
~R + ~R×

(
∇× ~β

)
+ ~β ×

(
∇× ~R

)
. (3.17)

Computing the four terms on the right hand side gives:(
~R · ∇

)
~β = ~̇β

(
~R · ∇tr

)
, (3.18)(

~β · ∇
)
~R = ~β − c~β

(
~β · ∇tr

)
, (3.19)

~R×
(
∇× ~β

)
= −~̇β

(
~R · ∇tr

)
+∇tr

(
~̇β · ~R

)
, (3.20)

~β ×
(
∇× ~R

)
= c~β

(
~β · ∇tr

)
− c∇tr~β2, (3.21)

again the details are left as an exercise. Adding the four terms together leads to

∇
(
~R · ~β

)
= ~β +∇tr

(
~̇β · ~R− cβ2

)
, (3.22)

substituting this in to the gradient of the scalar potential gives

∇φ =
q

4πε0

1

R2κ2

[
~β + c∇tr

(
1− β2 + ~̇β ·

~R

c

)]
. (3.23)

Using Eq. (3.15) this becomes

∇φ =
q

4πε0

1

R2κ2

[
~β − 1

κ
n̂

(
1− β2 + ~̇β · n̂R

c

)]
. (3.24)
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A similar computation, making use of Eq. (3.16) and µ0 = 1
c2ε0

leads to

∂ ~A

∂t
=

q

4πε0

1

R2κ2

[
R

c
~̇β − ~β +

1

κ

(
1− β2 +

R

c
n̂ · ~̇β

)
~β

]
. (3.25)

The electric field is given by

~E = −∇φ− ∂ ~A

∂t

= − q

4πε0

1

R2κ3

[(
~β − n̂

) (
1− β2

)
− R

c

(
−κ~̇β +

(
n̂− ~β

)(
~̇β · n̂

))]
,

the second term is neatened up by using

n̂×
((
n̂− ~β

)
× ~̇β

)
=
(
n̂− ~β

)(
n̂ · ~̇β

)
− ~̇βκ, (3.26)

leading to

~E =
q

4πε0

(
n̂− ~β

)
(1− β2)

R2κ3
+

q

4πε0c

[
n̂×

((
n̂− ~β

)
× ~̇β

)]
Rκ3

. (3.27)

The first term in Eq. (3.27) falls of as 1
R2 and is know as the velocity field, while the second

term falls of as 1
R

is called the radiation or acceleration field,

~Erad =
q

4πε0c

[
n̂×

((
n̂− ~β

)
× ~̇β

)]
Rκ3

. (3.28)

A very similar computation, see Problem. B.5, gives the magnetic field due to a moving charge,

~B =
n̂

c
× ~E, (3.29)

with the radiation component

~Brad =
n̂

c
× ~Erad. (3.30)

3.3 Radiation from Non-Relativistic Particles

This section could also be titled “A derivation of the Larmor formula” as this is the expression
which governs the power radiated by a point charge. Throughout we will work with charges
moving in vacuum, to get the results in a medium requires changing µ0, ε0 → µ, ε and keeping
track of any subtleties that this introduces. In Equations (3.27) and (3.29) we know what the
fields of an accelerating charged particle is. To compute the power radiated we need to the
Poynting vector

~S =
1

µ
~E × ~B =

1

µc

(
~E ×

(
n̂× ~E

))
=

1

µc

(
E2n̂−

(
n̂ · ~E

)
~E
)
. (3.31)

To find P =
∮
~S · d~a we integrate over a two sphere of radius R with R → ∞, recalling that

the power radiated depends on the fields at the retarded time tr, see Figure. 1 for a sketch of
what this looks like.
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Figure 1: A moving charge radiates in a sphere.

As was discussed above upon integration only the radiation field survives, as the velocity field
gives terms proportional to 1

R4 which go to zero as R → ∞. Also from Equation. (3.28) we

know that ~Erad is perpendicular to n̂ which means that

~Srad =
1

µ0c
|Erad|2n̂. (3.32)

As a first attempt let us consider the non-relativistic case, that is where the velocity of the
particle is much smaller than the speed of light (β � 1 or v � c which implies that κ ' 1). If

n̂ and ~̇β have an angle θ between them then,

~Erad =
q

4πε0c2

n̂× (n̂× ~a)

R
=

µ0q

4πR
[(n̂ · ~a) n̂− ~a] . (3.33)

Thus the Poynting vector is

~Srad =
1

µ0c

( µ0q

4πR

)2 (
a2 − (~a · n̂)2) n̂ =

µ0q
2a2

16π2R2
sin2 θ n̂. (3.34)

This leads to radiation in a doughnut around the acceleration vector, as θ = 0 for n̂ parallel (or
anti-parallel) to ~a there is no radiation in the direction of acceleration. Figure 2, taken from
[2], shows the shape of this radiation profile.

Figure 2: Radiation from an accelerating charge occurs in a doughnut.
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To find the total power radiated we just need to integrate the Poynting vector over the sphere
of radius R:

P =

∮
~Srad · d~a =

µ0q
2a2

16π2c

∫ 2π

0

∫ π

0

sin2 θ

R2
R2 sin θdθdφ =

µ0q
2a2

6πc
, (3.35)

this is known as the Larmor formula. In carrying out the integrals we used that
∫ π

0
sin3 θdθ = 4

3
.

In [2] a relativistic generalisation of this is results is given, i.e where v � c is no longer assumed,

P =
µ0q

2γ6

6πc

(
a2 −

∣∣∣∣~v × ~ac
∣∣∣∣2
)

(3.36)

with γ = 1√
1− v2

c2

. This is known as Liénard’s generalisation and reduces to Equation (3.35) when

v � c. The γ6 means that the radiated power increases drastically as the particles velocity
approaches the speed of light.

An important observation from Equation (3.35) is that the power is proportional to the square
of the charge and the square of acceleration. This means that particles radiate the same power
regardless of if they are positively or negatively charged, it also means that only accelerating
particles radiate. Finally, it implies that the radiation is the same independent of if the particle
is accelerating or decelerating.

Example 3.1. Special case : radiating dipole
Consider a charge q dipole that is oscillating along the z-axis. The dipole moment is given by
~d = q~r, for position vector ~r. Accounting for the oscillation this is given by

~d = d0 cos (ωt) êz = <
{
d0e

iωtêz
}
. (3.37)

In complex notation this means that

qv̇ = ~̈d = −ωd0e
−iωtêz = −ω2~d. (3.38)

The electric radiation field is then given by

~Erad,d =
µ0qv̇

4πr
sin θêθ

= −µ0ω
2d0

4πr
sin θêθ<

{
e−iωtr

}
= −µ0ω

2d0

4πr
sin θêθ<

{
e−i(ωt−kr)

}
,

(3.39)

using this the time average of the Poynting vector is

〈Srad〉 =
ε0c

2
|E|2 =

µ0

32π2cr2
ω4|d0|2 sin2 θ, (3.40)

and the time average of the power radiated is

〈Prad〉 =
µ0

12πc
ω4|d0|2. (3.41)

This is the same result as the Larmor formula, the factor of 1
2

difference is due to the time
averaging.
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3.4 Radiation from Relativistic Particles

What about radiation from particles moving at relativistic velocities? We could start from
Equation (3.36) and derive the results of the following section, instead we will take a slightly
different approach. The acceleration can be split into two pieces ~a = ~apar + ~aperp, parallel and
perpendicular to the velocity. We will treat these two cases separately.

3.4.1 Parallel Radiation

Case I: ~a parallel to ~v. In this case ~β × ~a=0 so the radiation fields become:

~Erad =
q

4πε0c

n̂
(
n̂× ~̇β

)
Rκ3

=
µ0q

4π

n̂ (n̂× ~a)

Rκ3
, (3.42)

~Brad =
n̂

c
× ~Erad =

µ0q

4πcRκ3
[n̂× (n̂× (n̂× ~a))] =

µ0q

4πc

~a× n̂
Rκ3

. (3.43)

In finding ~Brad we have expanded the vector triple product and used that n̂ × (n̂× ~a) = 0.

We also have that κ = 1 − n̂ · ~β = 1 − β cos θ. This gives a 1
(1−β cos θ)3

term which changes

the direction that the radiation is emitted in, tilting it towards the velocity. Pictorially, the
doughnut of radiation is pushed forward and stretched out, see Figure 3 for a schematic of what
happens.

Figure 3: Radiation from a point charges whose acceleration is parallel to its velocity. The
doughnut of Figure 2 has been pushed forward and stretched out. This picture is rotationaly
symmetric around ~v.

A natural next step is to consider the θ-dependence of the emitted radiation and calculate the
angle of maximum emission, θmax. Before doing this recall that the emitted power is not equal
to the detected power. This is due to the build up of wave fronts in front of a moving charge.
The ~Erad, ~Brad fields above give the detected fields rather than the emitted fields. In terms of
the work done on the charges the detected power is

Prad(t) = −dW
dt

. (3.44)

Since the particle is moving, the change in the retarded time, tr, is different than the change
in detector time, t. What we want is

Prad(tr) = −dW
dtr

. (3.45)
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From Equation (3.16) it follows that ∂f
∂tr

= κ∂f
∂t

. This leads to

Prad(tr) = −dW
dtr

= −κdW
dt

= κPrad(t). (3.46)

If we consider the angular dependence on a sphere of radius R, dPrad(tr)
dΩ

= − d2W
dΩdtr

with solid
angle dΩ, we find the emission profile,

− d2W

dΩdtr
= −κd

2W

dΩdt
= κ|~Srad|R2

=
κ

µ0c
|Erad|2R2

=
κ

µ0c

(µ0q

4π

)2 |n̂× (n̂× ~a)|2

R2κ6

=
µ0q

2|~a|2

16π2c

sin2 θ

(1− β cos θ)5 .

The angular dependence of the emitted power is thus

dPrad(tr)

dΩ
=
µ0q

2|~a|2

16π2c

sin2 θ

(1− β cos θ)5 . (3.47)

To find the angle at which the emitted power is maximum consider d
dθ
dPrad(tr)

dΩ
= 0. A fairly

staight forward computation, see Problem B.6, results in

cos θmax =

√
1 + 15β2 − 1

3β
(3.48)

For strongly relativistic motion with β ' 1, e.g. γ � 1, this becomes

cos θmax =
1

2

1

γ
. (3.49)

The total power emitted is found by integrating this over the solid angle, dΩ = sin θdθdϕ =
d (cos θ) dϕ. This leads to

Prad(tr) =

∫
dPrad(tr)

dΩ
dΩ (3.50)

=
µ0q

2a2

16π2c

∫ 2π

0

dϕ

∫ 1

−1

sin2 θ

(1− β cos θ)5d (cos θ) (3.51)

=
µ0q

2a2

16π2c
2π

4

3

1

(1− β2)3 (3.52)

=
µ0q

2a2

6πc
γ6. (3.53)

The first part, µ0q2a2

6πc
, is the Larmor formula of the previous section with γ6 the relativistic

correction.

Notice that the angular distribution is the same for both accelerating and decelerating charges.
The radiation from a rapidly decelerating charge is called Bremsstrahlung, or braking radiation.
We will return to this in Section 4.2.
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3.4.2 Perpendicular Radiation

Case II: ~a perpendicular to ~v. When the acceleration is perpendicular to the velocity there are
two angles in the problem; α between n̂ and the velocity, and θ between n̂ and the acceleration,
as shown in Figure 4. This means that

~β · n̂ = β cosα, ~a · n̂ = a cos θ. (3.54)

The vector term in ~Erad, Equation (3.28), becomes(
n̂×

((
n̂− ~β

)
× ~a
))

=
(
n̂− ~β

)
(n̂ · ~a)− ~a

(
n̂ ·
(
n̂− ~β

))
(3.55)

=
(
n̂− ~β

)
a cos θ − ~a (1− β cosα) (3.56)

and note that (
n̂− ~β

)2

= 1− 2β cosα + β2. (3.57)

The modulus of the Poynting vector is |~Srad| = ε0c|Erad|2, squaring
(
n̂×

((
n̂− ~β

)
× ~a
))

Figure 4: When the acceleration is perpendicular to the velocity we have two angles; α between
n̂ and the velocity, and θ between n̂ and the acceleration.

gives(
n̂×

((
n̂− ~β

)
× ~a
))

=
(
n̂− ~β

)2

a2 cos2 θ − 2~a ·
(
n̂− ~β

)
a cos θ (1− cosα) + a2 (1− β cosα)2

= a2
[
cos2 θ

(
β2 − 1

)
+ (1− β cosα)2]

]
.

Since the angular distribution of the power radiated is

dPrad(θ, ϕ, tr)

dΩ
= κ

dPrad(θ, ϕ, t)

dΩ
= κ|Srad(θ, ϕ, t)|R2, (3.58)

which implies that

dPrad(θ, ϕ, tr)

dΩ
=
µ0q

2a2

16π2c

[
cos2 θ (β2 − 1) + (1− β cosα)2]

]
(1− β cosα)5 . (3.59)
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Figure 5: A cross section of the angular distribution of the power radiated when ~a‖~v.

In spherical coordinates9 recall that cosα = cosϕ sin θ. Putting this altogether and integrating
the angular distribution gives

Prad(tr) =

∫
dPrad

dΩ
dΩ (3.60)

=
µ0q

2a2

16π2c

∫ 2π

0

[∫ π

0

sin θ

[
cos2 θ (β2 − 1) + (1− β cosα)2]

]
(1− β cosα)5 dθ

]
dϕ (3.61)

=
µ0q

2a2

16π2c

8π

3

1

(1− β)2 (3.62)

=
µ0q

2a2

6πc
γ4. (3.63)

As above we see that the first part is the classical Larmor formula, with the relativistic correction
γ4 = 1(

1− v2
c2

)4 . The integral identity

∫ 2π

0

[∫ π

0

sin θ

[
cos2 θ (β2 − 1) + (1− β cosα)2]

]
(1− β cosα)5 dθ

]
dϕ =

8π

3

1

(1− β)2 (3.64)

is slightly painful to establish and involves several substitutions. Checking it is left as an
exercise to the motivated reader.

The emitted power,

Prad(tr) =
µ0q

2a2

6πc
γ4, (3.65)

is known as the synchrotron radiation. In general if ~a · ~v = av cosϑ the radiated power is

Prad(tr) =
µ0q

2a2

6πc

(
1− β sin2 ϑ

(1− β2)3

)
, (3.66)

replicating the two earlier results for the in the limits ϑ = 0, π.

3.4.3 Motion in a constant magnetic field

Synchrotron radiation is relevant when a charged particle is moving in a circle, such as a particle
moving in a constant magnetic field.

9To match [2] instead use cos θ = cosϕ sinα for spherical coordinates α,ϕ.

23



The relativistic equation of motion for an electron moving in a constant magnetic field is:

γme~a =
d

dt
(γme~v) =

d~p

dt
= −e~v × ~B, (3.67)

so the acceleration is perpendicular to the velocity, e.g. the electron moves in a circle10. For
uniform circular motion we have that the magnitude of the velocity is

v = ΩcρL (3.68)

with ρL the radius of the circle and Ωc the angular velocity. We also have that the magnitude
of the acceleration is

a = Ω2
cρL = Ωcv =

evB

γme

, (3.69)

and that the acceleration points inwards. This implies that the angular frequency is

Ωc =
eB0

meγ
=
ωc
γ
, (3.70)

where ωc is the non-relativistic cyclotron frequency. We also find that the radius of the circular
motion is

ρL =
γmev

eB0

, (3.71)

known as the relativistic Larmor radius. The moving electron will emit synchotron frequency.
A nice problem based on these ideas is to consider a classical version of the Bohr model of the
atom, and estimates its life time using Equation (3.35). See Problem B.7.

3.5 Radiation Reaction

This section was not lectured but is included to show some of the subtleties that show up when
particles are radiating. It is presented in more detail in [2].

In the previous sections we have observed that an accelerating particle radiates, this radiation
carries away energy. Therefore, subject to the same force, a charged particle will accelerate less
than a neutral particle of the same mass. This is because the emitted radiation exerts a force
on the particle, ~Frad, known as the radiation reaction. We can attempt to derive the radiation
reaction force from conservation of energy.

For a non-relativistic particle the Larmor formula, Equation (3.35) gives the total power radi-
ated as

P =
µ0q

2a2

6πc
. (3.72)

Conservation of energy then suggests that

~Frad · ~v = −P = −µ0q
2a2

6πc
, (3.73)

e.g. the particle loses energy due to the radiation reaction force. Unfortunately this equation
is not complete. This is because we need to consider the total power lost, including power lost

10We have cheated slightly, γ is only constant if |~v| is constant, e.g. the acceleration changes the direction of
the velocity but not its magnitude. This is the case for a particle moving in a circle.
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due to the velocity field. We can circumvent this by considering the time average of the power
over an interval which has the same energy stored in the velocity field at both end points. The
time averaged version of Equation (3.73),∫ t2

t1

~Frad · ~vdt = −µ0q
2

6πc

∫ t2

t1

a2dt (3.74)

is then valid. To make more sense of the time average equation integrate by parts on the right
hand side: ∫ t2

t1

a2dt =

∫ t2

t1

d~v

dt
· d~v
dt
dt =

(
~v · d~v

dt

)t2
t1

−
∫ t2

t1

d2~v

dt2
· ~vdt, (3.75)

for the velocity field to store the same energy at both ends of the interval we are assuming that
~v(t1) = ~v(t2), so the first term in the integration by parts vanishes and we are left with∫ t2

t1

(
~Frad −

µ0q
2

6πc
~̇a

)
· ~vdt = 0. (3.76)

This leads to the Abraham-Lorentz formula

~Frad =
µ0q

2

6πc
~̇a. (3.77)

This equation does not include components of ~Frad perpendicular to ~v so it is still not complete.
However, it is good enough for a first attempt.

Equation (3.77) has some troubling implications:

1. If there are no external forces then Newton’s second law implies that

Frad =
µ0q

2ȧ

6πc
= ma, (3.78)

which is solved by a = a0e
t
τ , with τ = µ0q2

6πc
. For an electron τ = 6× 10−24s. This means

that the acceleration spontaneously increases leading to runaway solutions.

2. The above runaway solutions can be excluded if a0 = 0. However, this has the unpleasant
consequence that if an external force is applied, the charged particle accelerates before
feeling the force.

These are both pathological and undesirable features, suggesting that something is wrong with
our classical theory of a charged particle.

There is relativistic generalisation of Equation (3.77), however, it does not solve the prob-
lems. Theses pathologies suggest that there is no such thing as a point charge in classical
electromagnetism.

For a discussion of the physical mechanism behind the radiation reaction the interested reader
is referred to [2].

25



4 Different Types of Radiation

4.1 Cyclotron and Synchrotron

4.1.1 Qualitative overview

Before getting in to the details we can give a brief overview of cyclotron and synchrotron
radiation.

Non-relativistic motion (cyclotron radiation). Consider a charge moving in a circle, e.g. in
a constant magnetic field. Consider the observer being in the plane of rotation, as the radiation
field is proportional to n̂× (n̂× ~a) it projects out the pieces of ~a that are parallel to ~v and we
are left with the perpendicular piece of ~a.

Include a figure here!

Observers will see the rotating charge as being an oscillating dipole with dipole moment

d(t) = d0 sin (ωct+ φ0) = qρL sin (ωct+ φ0) . (4.1)

This implies that the radiation field is

~Erad =
µ0q

4π

n̂× (n̂× ~a)

r
(4.2)

=
µ0q

4π

|a| sin (ωct+ φ0)

r
ê (4.3)

=
m0q

4π
ρLω

2
c

(ωct+ φ0)

r
ê. (4.4)

This is purely a sinusoidal oscillation and thus its Fourier transform consists of a single delta
function peak. To see this consider that

sinωct =
1

2i

(
eiωct − e−iωct

)
, (4.5)

and the Fourier transform of the exponential is

FT
(
eiωct

)
= 2πδ (ω − ωc) , (4.6)

a Dirac delta function. Thus the Fourier transform of ~Erad consists of the sum of two delta
functions δ (ω − ωc) + δ (ω + ωc), and for positive frequency there is a single peak at ω = ωc.
The power spectrum is proportional to the square of the radiation field, P (ω) ∼ |FT [E(t)] (ω)|2,
thus also consists of a single peak at ωc.

The takeaway from this example is that the cyclotron frequency directly determines the fre-
quency of emitted radiation.

Relativistic motion (synchrotron radiation). We know that for a relativistic particle with
acceleration perpendicular to velocity that the radiation is sharply peaked along ~v. This is
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sometimes called lighthouse type emission, or headlight emission. It is similar to the above
case in that the relativistic cyclotron frequency Ωc determines the spectrum. However, the
relativistic correction factors mean that now there is radiation at every harmonic of Ωc, ω = nΩc

for n ∈ Z. The dominant contribution is not at ω = Ωc but at a higher frequency, e.g. ω = 7Ωc.
The higher harmonics of Ωc correspond to extremely large photon energies for ultra relativistic
particle, γ � 1.

4.1.2 Basic mathematical details

Consider a relativistic massive particle, with mass m and charge q, moving in a constant
magnetic field. The equation of motion is

d

dt
(γm~v) = q~v × ~B, (4.7)

this is a relativistic analogue of the Lorentz force law for a magnetic force. There is a corre-
sponding “time component” of this equation

d

dt

(
γmc2

)
= q~v · ~E = 0. (4.8)

Another way to phrase this second equation is that there is no work done by a magnetic
force. This implies that the magnitude of the velocity, and thus the gamma factor, is constant.
Importantly, the velocity is not constant, it is only the direction which is able to change.
Rearranging the equation of motion and solving for the acceleration we find

~a =
q

γm
~v × ~B, (4.9)

with magnitude

a =
qvB

γm
sinα, (4.10)

where α is the angle between ~v and ~B called the pitch angle. Working in the rest frame of the
charge, we know that the emitted power is given by the Larmor formula

P ′ =
q2 (a′)2

6πε0c3
=
µ0q

2 (a′)2

6πc
, (4.11)

using c2 = 1
ε0µ0

in the last equality, with a′ the acceleration in this frame. A natural question is

how this is related to the power emitted in an observer’s frame11. Recall that energy and time
transform the same way when moving between rest frames;

dE = γdE ′, (4.12)

dt = γdt′. (4.13)

Thus
dE ′

dt′
=
dE

dt
, ⇒ P ′ = P, (4.14)

11In principle this is a straight forward exercise in using the relativistically corrected power emitted formula
in Eq. (3.65). However, here we give a bit more explanation.
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so the same power is emitted. Finally we need to use the relationship between the acceleration
in the two frames to express the power radiated in terms of the a that we found above. Recall
that

a′‖ = γ3a‖, parallel to motion (4.15)

a′⊥ = γ2a⊥, Perpendicular to motion. (4.16)

Here the acceleration is perpendicular to the velocity so a′‖ = 0 and a′ = γ2a. Putting all of
this together the power radiated in the observers frame is

P =
q2γ4a2

6πε0c3
=
q4γ2v2B2 sin2 α

6πε0m2c3
. (4.17)

This is the power radiated by a single charge moving with pitch angle α. For a collection
of charges with isotropic velocities we need to average over the pitch angle. This is done by
integrating over the solid angle dΩ = r sinαdαdϕ and normalising by the volume of the radius
r S2, 4πr,

〈sin2 α〉 =
1

4πr

∫
sin2 αdΩ =

1

4π

∫ 2π

0

dϕ

∫ π

0

sin3 αdα =
2

3
. (4.18)

Which implies that

〈P 〉 =
q4γ2v2B2

9πε0m2c3
. (4.19)

This is inversely proportional to the mass squared, 〈P 〉 ∼ m−2. Thus the lighter the charged
particle the more power it radiates. Because of this synchrotron radiation from electrons is
often the dominant contribution, over the radiation due to protons or ions. This is particularly
relevant in particle accelerators, and is the reason why protons in the LHC achieve much higher
energies than electron in did in LEP even though they use the same tunnel.

4.1.3 Spectrum and general properties

The angular distribution of the synchrotron radiation for each particle is highly doppler shifted
in the forward direction, as can be seen in Figure. 5. The radiation from a single charge appears
as a pulse with duration, ∆t, much less than the gyration period. This is because there is only
a small arc of the charges circular orbit where the observer’s line of sight lies inside the emission
cone.

Recall that the Fourier transform relates a narrow function of time to a broad function of
frequency, as ∆t∆ω = 4π. Thus we expect that there is a broad frequency spectrum. To get a
rough estimate of ∆t using Figure. 6

Recall that the equation of motion is

mγ
dv

dt
= qvB sinα, (4.20)

or alternatively

ma =
qvB sinα

γ
=
mv2

R
, (4.21)
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R

Figure 6: Consider a small arc of the charge’s circular orbit. Point 1 is where the emission
begins to be visible to the observer and point 2 is where the emission stops being visible. This
means that our small angle is given by ∆θ = 2

γ
, and the approximation d ' ∆s is valid for

ultra relativistic charges, γ � 1. For the time interval ∆t = t2 − t1 the observers’ line of sight
lies inside the emission cone. Figure taken from [1].

where the final equality is to the centipetal force for a circular orbit of radius R. Solving for R
gives

R =
mγv

qB sinα
=

v

ωB sinα
, (4.22)

where ωB = qB
γm

is the gyration frequency of the charge’s orbit. For the distance the charge
travels along the arc between point 1 and point 2 consider the definition of an angle in radians,

∆s = R∆θ =
2v

γωB sinα
. (4.23)

In the ultra relativistic limit, we also have that

∆s ∼ v∆t, (4.24)

which implies that

v∆t ' 2v

γωB sinα
. (4.25)

This gives the pulse duration as

∆t =
2

γωB sinα
. (4.26)

This is not the same as the difference in arrival times measured by an observer between a photon
(p1) emitted at point 1 and a photon (p2) emitted at point 2. This difference is determined by
the difference between the speed of light and the speed of the charge. The difference in arrival
times is ∆tA, it is related to the difference in emission times, ∆t, through

c∆tA = c∆t−∆s. (4.27)

Which gives that

∆tA =
2

γωB sinα

(
1− v

c

)
. (4.28)
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This can be rewritten in terms of the γ factor in the following way:

γ2 =
1

1− v2

c2

, (4.29)

⇒ v

c
=

(
− 1

γ2

) 1
2

(4.30)

' 1− 1

2γ2
, for γ � 1. (4.31)

Thus we have that 1− v
c
' 1

2γ2
and

∆tA =
1

γ3ωB sinα
. (4.32)

On the other hand the period of gyration is given by

T =
2π

ωB
, (4.33)

so that

∆tA =
1

γ3
T

1

2π sinα
. (4.34)

The pulse is thus very narrow for γ � 1. As a consequence of this, we expect the spectrum
to have an effective cut off at an angular frequency of order 1

∆tA
, known as the critical fre-

quency. Above this cut off the spectrum will be negligible. Conventionally the cut off (angular)
frequency is taken to be

ωc =
3

2
γ3ωB sinα, or νc =

3

4π
γ3ωB sinα. (4.35)

Previously we considered the total power, what about the qualitative behaviour of the spec-
trum?

Introduce a dimensionless function F
(
ω
ωc

)
so that that the power spectrum can be written as

P (ω) = C1F

(
ω

ωc

)
, (4.36)

with C1 a constant term containing the various physical constants and specified parameters in
the power. This is the Fourier transform of the power radiated by a charge with tilt angle α.
The total power is the integral over the spectrum,

P =

∫ ∞
0

P (ω)dω = C1

∫ ∞
0

F

(
ω

ωc

)
dω. (4.37)

If we can turn this integral into a definite integral, it will be a constant piece and we can find
the expression for the constant. To do this let x = ω

ωc
then dω = ωcdx which implies

P = C1ωc

∫ ∞
0

F (x)dx, (4.38)
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giving us our desired definite integral. For a method of determining the function F (x) see
Chapter 6 of [1]. The constant piece is thus

C1 =
P

ωc

[∫ ∞
0

F (x)dx

]−1

=

(
q4γ2v2B2 sin2 α

6πε0m2c3

)
1

3
2
γ3ωB sinα

[∫ ∞
0

F (x)dx

]−1

=
q3B sinα

9πε0mc

[∫ ∞
0

F (x)dx

]−1

,

(4.39)

note that the factors of γ have cancelled out, we have approximated v2 ' c2, and substituted
in the relativistic cyclotron frequency ωB = qB

γm
.

The power spectrum is thus

P (ω) = Cn
q3B sinα

9πε0mc
F

(
ω

ωc

)
, (4.40)

here Cn is the normalisation constant determined by F . The only γ dependence is in the ωc.

Example 4.1. Power Law Spectrum Often the observed spectrum has a power law be-
haviour over a certain frequency range:

P (ω) ∝ ω−s, ω ∈ (ω1, ω2) . (4.41)

The exponent s is known as the spectral index.

This happens if the distribution of particle energies, or equivalently the distribution of Lorentz
factors, is power law:

N(E)dE = CE−pdE, E ∈ (E1, E2) (4.42)

N(γ)dγ = C̃γ−pdγ, γ ∈ (γ1, γ2) . (4.43)

The quantities C, C̃ are not necessarily constant as they can depend on the pitch angle α.

For a collection of charges the total power is

Ptot(ω) =

∫ γ2

γ1

P1(ω)N(γ)dγ, (4.44)

with P1(ω) the power spectrum of a single charge, which we computed above. Substituting in
our expression for P1 gives

Ptot(ω) = C

∫ γ2

γ1

P1(ω)γ−pdγ ∝
∫ γ2

γ1

F

(
ω

ωc

)
γ−pdγ. (4.45)

Evaluate this using the change of variables x = ω
ωc

= κωγ−2 with κ a constant. In terms of γ

this means that γ =
√

κω
x

which implies that dγ = −1
2

√
κωx−

3
2dx and

Ptot(ω) ∝
∫ x2

x1

F (x)
(
ω−

p
2x

p
2

)(
ω

1
2x−

3
2

)
dx ∝ ω−

p−1
2

∫ x2

x1

F (x)x
p−3
2 dx. (4.46)
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The limits of integration correspond to the limits of the region where the distribution is a power
law. These limits can depend on the frequency, thus the integral is not necessarily a constant.
However, if the interval (γ1, γ2) is wide enough then we can approximate x1 ' 0 and x2 ' ∞.
This means that the definite integral is a constant and the power spectrum is

Ptot ∝ ω−
p−1
2 . (4.47)

This is a power law spectrum with spectral index s = p−1
2

. When we see an example of the
power spectrum later we will see that there is a power law regime for higher frequencies. This
regime is often called optically thin as the distribution of charges is transparent to photons,
they pass easily through the charges.

Lifetime of Synchrotron Sources: Consider a distribution of charges emitting synchrotron
radiation. The individual charges lose energy through radiation. This means that they can only
radiate for a finite amount of time before they loose all of their energy. An estimate of the
lifetime of a radiating charge is

τsynch '
E

〈P 〉
=

γmc2

q4γ2v2B2

9πε0m2c3

=
9πε0m

3c5

e4γv2B2
. (4.48)

Looking at this we see that the more energetic a charge is the more powerful its radiation is
and the shorter its lifetime is.

In Figure 7, taken from [1], a plot of the dimensionless function F is given. This gives the
shape of the power spectrum, and we see the peak at ωpeak = 0.3ωc ' 1

2
eB
m
γ2 sinα.

Figure 7: A plot of the dimensionless function F from [1].Here x = ω
ωc

. The peak is at
ω = 0.29ωc.

Thus more energetic charges radiate at higher frequencies. Because the charges radiating at
higher frequencies have shorter lifetimes the spectrum steepens with time.

An example of a spectrum with a power law regime is in Figure 8, again the figure is taken
from [1]. In the optically thick regime the synchrotron radiation is readily reabsorbed by the
population of charges that emitted it. This is known as synchrotron self-absorption.
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Figure 8: A plot of intensity, power spectrum, for a group of charges with a power law dis-
tribution of energy. The two regimes are: in the optically thick regime charges are opaque to
radiation as it is readily reabsorbed, in the optically thin regime the charges are transparent to
the radiation and it is emitted with a power law spectrum.

Polarisation of Synchrotron Radiation. Charges in the background of a magnetic field
gyrate, rotate perpendicular to the direction of the local magnetic field. This determines the
direction of linear polarisation for the synchrotron radiation in the optically thin regime.

Averaged over the tilt angle, the left and right handed elliptically polarised components of the
radiation cancel out. This leaves linearly, or at least partially linearly, polarised radiation. The
radiation of two components:

1. χ ⊥ B, the projection of B onto the plane of the sky is orthogonal to the direction of
linear polarisation.

2. χ‖B, the direction of linear polarisation is parallel to the plane of the sky.

This is shown in Figure 9

Figure 9: Taken from [1], a sketch of the decomposition of the polarisation of synchrotron
radiation into components perpendicular to and parallel to the plane of the sky.

It turns out that option 1 is more efficient at both emission and absorption. This means that
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in the optically thin regime χ ⊥ B is preferentially emitted, so is the dominant contribution to
the radiation. This has a high degree of polarisation, Π(ω) can be as high as 75%.

In the optically thick regime, χ ⊥ B is preferentially absorbed. This leaves χ‖B as the dominant
contribution to the radiation. The degree of polarisation is now around 10% to 15%.

Summary/ Hallmarks of Synchrotron Radiation.

� The dominant contribution is from lighter charges particles, such as electrons, since 〈P 〉 ∼
1
m2 .

� The radiation from a single particle lies within ∼ 1
γ

of a cone with half angle the pitch
angle α.

� When the number density of particles with energy E has a power law dependence, N(E) ∼
E−p (or equivalently N(γ) ∼ γ−p), the spectrum has a power law behaviour

Ptot ∼ ω−s, (4.49)

for s = p−1
2

the spectral index.

� Synchrotron radiation has a characteristic linear polarisation of up to 70% in the optically
thin region, where the spectrum is a power law.

4.2 Bremsstrahlung

The radiation emitted when a charge is deflected or decelerated by other charges, e.g. an
electron in the presence of ions, is known as Bremsstrahlung. There are two simplified cases

(A) Deceleration: An electron comes to a stop near an ion of charge Ze.

(B) Deflection: An electron is deflected when it passes near an ion. The direction of deflection
depends on the charge of the ion.

Include figures.

In both cases the interaction takes place over a finite time interval. This leads to characteristic
spectrum of radiation for Bremsstrahlung. From our earlier analysis, we know that the emitted
radiation is proportional to the acceleration of a non-relativistic charge12. The radiation field
in this case is

~Erad =
µ0q

4π

[n̂× (n̂× ~a)]

r
. (4.50)

Treating the radiating electron as an oscillating dipole, we know that the power emitted by
radiation is

Prad(ω) =
µ0

6πc
ω4
∣∣∣~d(ω)

∣∣∣2 , (4.51)

12This is also true for a relativistic charge where we also need to include the γ factor correction.
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with ω the oscillation frequency. As it is a function of frequency, we refer to Prad(ω) as the spec-

trum. Interpret ~d(ω) as the Fourier transform of the dipole moment, ~d(t) = q~r(t). Computing
this Fourier transform we have that,∣∣∣~d(ω)

∣∣∣2 =

∣∣∣∣∫ ∞
−∞

~d(t)eiωtdt

∣∣∣∣2 (4.52)

=

∣∣∣∣ 1

iω

[∫ ∞
−∞

d

dt

(
~d(t)eiωt

)
dt−

∫ ∞
−∞

~̇d(t)eiωtdt

]∣∣∣∣2 , after integrating by parts (4.53)

=
1

ω2

∣∣∣∣∫ ∞
−∞

~̇d(t)eiωtdt

∣∣∣∣2 (4.54)

=
1

ω4

∣∣∣∣∫ ∞
−∞

[
d

dt

(
~̇deiωt

)
− ~̈d(t)eiωt

]
dt

∣∣∣∣2 , again integrate by parts (4.55)

=
1

ω4

∣∣∣FT
[
~̈d(t)
]

(ω)
∣∣∣2 . (4.56)

Thus ∣∣∣~d(ω)
∣∣∣2 =

q2

ω4
|FT [~a(t)] (ω)|2 . (4.57)

In the integration by parts the boundary terms vanish as we assume that the dipole moment
and its derivative vanish asymptotically. This calculation tells us that to find the radiation
spectrum we need to understand the Fourier transform of the acceleration.

To carry this out we focus on case (B) in the weak deflection limit, e.g. vx is large enough that
the charge is not deflected very much and we can assume that vx is constant. For simplicity we
will also take the ion to be negatively charged when we draw the figure.

Include a figure here!

This is a scattering problem with the deflection depending on the impact parameter, sometimes
called the scattering parameter, b. The impact parameter is the distance between the moving
charge and the ion perpendicular to the charge’s initial velocity.

Consider the velocity before and after deflection:

� Before:

~v =

(
vx
0

)
. (4.58)

� After:

~v′ =

(
v′x

∆vy

)
. (4.59)

In the weak deflection limit we assume that vx(t) = vx is a constant, e.g. the horizontal
velocity does not change, and that ∆vy(t)� vx, the vertical velocity and hence the deflection
is negligible. We can thus take the position vector to be

~r =

(
x(t)
y(t)

)
'
(
vxt
b

)
. (4.60)
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Inserting this into the equation of motion, and projecting onto the vertical direction gives:

may(t) = ~FCoulomb · êy (4.61)

= − Zq
2

4πε0

~r

|~r|3
· êy (4.62)

= − Zq
2

4πε0

b[
(vxt)

2 + b2
] 3

2

. (4.63)

From this we observe that ay(t) is peaked around t = 0 and has a width of ∆t = b
vx

. This
is already enough to tell us that the Fourier transform will also have a peak with the inverse
width ∆ω ' 4π vx

b
. Thus is ay(t) is sharply peaked ay(ω) will be broad. It turn out the value

of ay(ω) is related to ∆vy, which is found by integrating ay(t).

Carrying out this integration we have,

∆vy =

∫ ∞
−∞

aydt (4.64)

= − Zq
2

4πε0

∫ ∞
−∞

b[
(vxt)

2 + b2
] 3

2

dt (4.65)

= − Zq
2

4πε0

1

b2

∫ ∞
−∞

1[(
vx
b
t
)2

+ 1
] 3

2

b

vx
d
(vx
b
t
)

(4.66)

= − Zq
2

4πε0

1

vxb

∫ ∞
−∞

1

(u2 + 1)
3
2

du (4.67)

= − Zq
2

2πε0

1

vxb
(4.68)

where we have used the standard integral
∫∞
−∞

1

(u2+1)
3
2
du = 2.

To understand the qualitative shape of the Bremsstrahlung spectrum we can approximate
ay(ω) by a box function13. That is we take ay(ω) to be a step function that is only non-zero
for |ω| < 2πvx

b
. The step height is taken to be maximum value, |ay(ω = 0)|:

|ay(ω = 0)| =
∣∣∣∣∫ ∞
−∞

ay(t)e
i(0)tdt

∣∣∣∣ =

∣∣∣∣∫ ∞
−∞

ay(t)dt

∣∣∣∣ = |∆vy| , (4.69)

exactly what we calculated above. The approximation of the spectral shape is thus

|ay(ω)| '

|∆vy|2 if |ω| < 2πvx
b

0 else,
(4.70)

with

|∆vy|2 =
Z2q4

4π2ε2
0m

2v2
x

1

b2
. (4.71)

13There are other approximates that can be used. However, I will claim that they all replicate the same
qualitative features. The box function is the simplest.
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For different impact parameters the spectral shape will change. However, the general features
remain the same, the spectra are relatively flat and broad up to a cut off frequency set by vx and
b. In reality the spectrum is an ensemble of scattering events for different impact parameters,
there is also a low frequency cut off due to absorption of emitted photons.

5 Plasma Physics

So far we have mostly considered radiation in vacuum. Often the presence of free charges is
important in astrophysics. Thus we need to consider a globally neutral ionised gas, a plasma.
Plasmas occur in many circumstances; lightning, solar corona, fluorescent lights, fusion reactors,
etc.

A plasma is made up of two, effectively, non-interacting gases . The negatively charged elec-
trons, and the positively charged ions. Usually the ions are so much more massive that we can
approximate them as being stationary.

5.1 Electromagnetic Waves in a Plasma

In a plasma there is a natural oscillation frequency associated with the movement of the elec-
trons.

Start from the quasi-neutral plasma, and consider a slab of plasma. Imagine displacing all
of the electrons in the slab by a small amount x, assuming that the ions stay in place. This
results in two charged slabs: the negatively charged slab with the displaced electrons, and the
positively charged slab where the electrons used to be. This results in an effective capacitor
with the charge on each plate being

Q = ±eneAx, (5.1)

with e the charge of an electron, ne the concentration of electrons in the plasma, and A the
cross sectional area of the slabs, The charge density of the slab is

σq = ±enex. (5.2)

Figure of slab to be added.

The induced electric field between the slabs is

~E =
σq
ε0

x̂ =
enex

ε0

x̂. (5.3)

Writing down the equation of motion for an electron we have:

mea = me
d2x

dt2
= eE = −e

2nex

ε0

. (5.4)

This means that the electrons feel a restoring force back towards their initial position. The
electrons thus undergo simple harmonic motion with frequency

ω2 =
e2ne
meε0

= ω2
pe. (5.5)
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This is known as the plasma frequency14.

Now consider an electromagnetic wave travelling through a plasma with electron concentration
(number density) ne. The initial electric field is

~E = ~E0e
i(~k·~r−ωt). (5.6)

The force due to the magnetic component is much smaller than that due to the electric field so
we discount it here. The equation of motion for an electron in the plasma is thus

me
d~v

dt
= −e ~E

= −e ~E0e
i(~k·~r−ωt)

⇒ ~v =
e

imeω
~E,

where we have integrated over time to find ~v. It is an oscillating quantity with the same
frequency as the external electromagnetic wave.

The current density for electrons in the plasma due to the external field is

~j = −ne~v = − nee
2

iωme

= σ ~E, (5.7)

with σ the conductivity. The conductivity of the plasma is thus

σ =
inee

2

ωme

. (5.8)

As a plasma is a conductive medium the wave number is complex:

k2 =
ω2

c2
+ iµ0σω

=
ω2

c2
+ iµ0ω

(
inee

2

meω

)
=
ω2

c2
− µ0ε0ω

2
pe

=
ω2

c2

(
1−

ω2
pe

ω2

)
.

When ωpe > ω k2 < 1, and the electromagnetic wave is exponentially decaying. This is referred
to as the no propagation regime.

When ω > ωpe we have k2 > 1 and there is propagation of the electromagnetic wave. e.g.
an electromagnetic wave only propagates through a plasma if its frequency is larger than the
plasma frequency.

14It is the electron plasma frequency. There is also a plasma frequency for the ions, ω2
pi = Z2e2ni

miε0
. This is

derived in the same way as the electron plasma frequency but now we need to be careful about the direction of
the electric field.
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For a propagating electromagnetic wave the phase velocity is

vph =
ω

c
= c

(
1−

ω2
pe

ω2

)− 1
2

=
c

nr
, (5.9)

where the refractive index is defined as

nr =
√
ε =

√
1−

ω2
pe

ω2
, (5.10)

in terms of the permittivity ε.

A propagating wave has ω > ωpe and thus nr < 1. This implies that vph > c, which seems to
violate special relativity!

Fortunately information does not travel at the phase velocity, it travels at the group velocity15

The group velocity is defined as

vg =
∂ω

∂k
= c

√
1−

ω2
pe

ω2
= cnr. (5.11)

As ω > ωpe the group velocity is smaller than c.

5.2 Dispersion Measure

From Equation (5.11) the group velocity in the plasma depends on the frequency of the electro-
magnetic wave. This means that a pulse of radiation (a collection of electromagentic waves with
different frequencies) that is initially narrow in ω spreads out (disperses) as it travels through
a plasma. As an example of this consider a pulse emitted by a Pulsar that passed through the
interstellar plasma on its way to earth.

Example 5.1. Pulsar Pulses
The time required for a signal, with frequency ω, to travel from its source to earth depends on
the frequency. This is because the distance travelled is related to the group velocity through

vg =
ds

dt
, (5.12)

which implies that

tω =

∫ d

0

ds

vg
, (5.13)

with d the distance between the source and Earth. As the wave propagates through the inter-
stellar plasma we can approximate ω � ωpe. In other words the electron plasma frequency is
much lower than the frequency of the signal.

This approximation allows us to expand the group velocity,

1

vg
=

1

c

(
1−

ω2
pe

ω2

)− 1
2

' 1

c

(
1 +

1

2

ω2
pe

ω2

)
. (5.14)

15The phase velocity is the velocity that the phase of the wave moves at, while the group velocity is the
velocity of the wave packet.
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This implies that the travel time is

tω =
1

c

∫ d

0

ds+
1

2c

∫ d

0

ω2
pe

ω2
ds (5.15)

=
d

c
+

e2

2cmeε0

1

ω2

∫ d

0

neds, substituting in ω2
pe. (5.16)

The first term is the travel time in vacuum, and the second term is the correction due to the
presence of the plasma. The electron concentration is left in the integral because it can vary
along the path. The integral of the electron concentration over the path travelled is called the
dispersion measure,

D =

∫ d

0

neds. (5.17)

Typically it is the rate of change of arrival time with frequency that is measured:

tω
dω

= − e2

cmeε0ω3
D. (5.18)

Thus D is computed from the measured tω
dω

. If we assume a typical value of ne along the path
we can estimate the distance from the source to the Earth,

D =

∫ d

0

ne ' (ne)typ d, ⇒ d ' D
(ne)typ

. (5.19)

This means that if we can measure d through a method like parallax, then we can estimate ne
along the line of sight.

Considering examples from the ATNF Pulsar catalogue, we can infer that the typical electron
concentration is

(ne)typ ' 0.02− 0.04cm−3. (5.20)

We can also infer that, in the absence of evidence that the line of sight passes through regions
of high electron concentration, a high dispersion measure implies that the source is far away.

5.3 Faraday Rotation

What happens if the plasma is subject to a fixed external magnetic field? The properties of an
electromagnetic wave propagating through the plasma now depends on its direction of travel
relative to the direction of the magnetic field.

Think of the wave as a superposition of a left circularly polarised and a right circularly polarised
component:

~EL(t) = E0 [cosωt ε̂1 + sinωt ε̂2] , (5.21)

~ER(t) = E0 [cosωt ε̂1 − sinωt ε̂2] , (5.22)

here ε̂1, ε̂2 are the polarisation unit vectors perpendicular to the propagation direction.
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A nice compact expression that stands for both components16 is

~E(t) = E0e
−iωt (ε̂1 ∓ ε̂2) , (5.23)

with + for RCP and − for LCP.

If we assume that the local magnetic field is much stronger than the magnetic field of the
electromagnetic wave, we can neglect the latter. This means that the equation of motion for
an electron in the plasma is

m
d~v

dt
= −e ~E − e~v × ~B. (5.24)

Supposing that the wave propagates along the direction of the local magnetic field:

~B = B0ε̂3, (5.25)

with ε̂1 × ε̂2.

Substitute this and the Equation (5.23) into the electron’s equation of motion and solve for the
velocity. To make the problem tractable, we look for a “steady state” solution, i.e. one which
is oscillating rather than exponentially decaying. To achieve take the ansatz

~v = (α + iβ) e−iω
′tε̂1 + (γ + iδ) e−iω

′tε̂2. (5.26)

The strategy is to compute d~v
dt

, then substitute this and ~v into the equation of motion.

The first observation, coming from equating the phases on both sides of the equation, is that
the phases need to agree, ω = ω′. This leaves us with four equations, coming from the real and
imaginary parts of the coefficients of ε̂1, ε̂2, in four unknowns α, β, γ, δ. Solving these equations
leads to

~v(t) = −i e

me (ω ± ωB)
~E(t), (5.27)

where ωB = eB0

me
is the gyration frequency of the electrons.

Different directions of polarisation for the electromagnetic wave thus result in different velocities
for the electrons in the plasma. This leads to a different conductivity depending on the direction
of polarisation:

~j = σ ~E = −nee~v (5.28)

= i
nee

2

m (ω ± ωB)
~E, (5.29)

⇒ σ = i
nee

2

m (ω ± ωB)
= i

ε0ω
2
pe

ω ± ωB
. (5.30)

The different conductivities in turn lead to different group velocities for the propagation of the
wave through the plasma. To see this relate the conductivity to the permittivity17,

εR,L = 1− σ

iε0ω
= 1−

ω2
pe

ω (ω ± ωB)
. (5.31)

16Checking that both expressions agree is a matter of expanding the complex exponential and looking at its
real part. This was demonstrated in the lectures.

17The previous result for the permittivity is recovered for B0 = 0.
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The phase vector that ~E rotates through for a given component travelling a distance ds through
the plasma is kds. The total phase change after travelling a distance d through the plasma is

φR,L =

∫ d

0

kR,Lds. (5.32)

The phase difference between the two components is thus

∆θ = φR − φL =

∫ d

0

(kR − kL) ds. (5.33)

To evaluate it further we make use if the phase velocity, vph = ω
k

= c√
ε
, which enables us to

write

kR,L =
ω

c

√
εR,L =

ω

c

√
1−

ω2
pe

ω (ω ± ωB)
. (5.34)

This can be simplified if we assume that the frequency of the electromagnetic wave is much
greater than both the electron plasma frequency, and the electron gyration/cyclotron frequency.
These approximations allow us to make two Taylor expansions, and write

kR,L =
ω

c

(
1− 1

2

ω2
pe

ω (ω ± ωB)

)
(5.35)

=
ω

c

(
1− 1

2

ω2
pe

ω2

(
1± ωB

ω

)−1
)

(5.36)

' ω

c

[
1− 1

2

ω2
pe

ω2

(
1∓ ωB

ω

)]
. (5.37)

The difference between the wave vectors is

kR − kL =
ω

c

ω2
pe

ω2

ωB
ω

(5.38)

=
ωB
c

ω2
pe

ω2
(5.39)

=
1

ω2c

nee
2

meε0

eB0

me

, (5.40)

which gives the phase difference as

∆θ =
e3

m2ε0cω2

∫ d

0

neB0ds. (5.41)

The electron concentration and the magnetic field stay within the integral as they can vary
along the path that the electromagnetic wave travels. The result can be generalised to account
for the wave not travelling parallel to the direction of the magnetic field. If this is done B0ds
is replaced by ~B · d~s.

Faraday rotation is the effect that this phase difference between the LCP and RCP leads to
a rotation in the direction of linear polarisation. To understand this we need to know the
relationship between ∆θ and ∆χ.
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Add a figure

The relationship is that

∆χ =
1

2
∆θ. (5.42)

Conventionally the change in the direction of linear polarisation is expressed in terms of the

wavelength, λ2 =
(

2πc
ω

)2
, rather than the frequency:

∆χ =
1

2

e3

m2ε0c

(
λ

2πc

)2 ∫ d

0

ne ~B · d~s =
e3

8π2m2
eε0c3

(∫ d

0

ne ~B · d~s
)
λ2. (5.43)

The coefficient of λ2 is known as the rotation measure,

RM =
e3

8π2m2
eε0c3

(∫ d

0

ne ~B · d~s
)
. (5.44)

The rotation measure is found by measuring the direction of linear polarisation at several
wavelengths. While we can infer the value of

∫ d
0
ne ~B · d~s, we cannot in general disentangle

ne(s), ~B(s) and the path taken.

Similar to the dispersion measure we can only infer typical or average values in most cases. Not,
the how the values are distributed along the line of sight. If the sign of the rotation measure
changes, this indicates that the magnetic field changes direction along the line of sight. The
rotation measure gives a lower limit on the integral, since if the magnetic field reverses direction
it reduces the size of the rotation measure.

If the wave is linearly polarised, for example if it is due to synchrotron radiation, the observed
rotation measure can be used to give a 3D view of the magnetic field structure. This is because,
synchrotron radiation is associated with the component of the magnetic field in the plane of the
sky. While, the Farady rotation is associated with the component of the magnetic field along
the line of sight.

5.4 Razin Effect

We now want to give an example of how passing through a plasma changes the radiation18.
The angular range within which radiation is emitted by a relativistic charge is concentrated
around the forward direction of motion:

θb ∼
1

γ
=
√

1− β2. (5.45)

This is true for a source moving in a vacuum. In a medium the speed of light is nolonger c but
c
nr

. Thus the angular range is

θb ∼
√

1− n2
rβ

2, (5.46)

with n2
r = 1− ω2

pe

ω2 for a plasma.

The are two cases to consider:
18Another such effect, relevant when nr > 1 is Cherenkov radiation. This is when the velocity of the charges

exceeds the phase velocity of an electromagnetic wave in the medium. In a future version of these notes I may
add a discussion of Cherenkov radiation.
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� If the refractive index is of order 1, nr ∼ 1, this reduces to the vacuum case.

� For an ultra relativistic charge, β ∼ 1, if the refractive index is very different from 1 the
angular range is

θb ∼
√

1− n2
r ∼
√

1− ε ∼ ωpe
ω
. (5.47)

Here the index of refraction dominates at low frequencies. As the frequency increases, θb
decreases until it becomes ∼ 1

γ
. e.g the medium is important when ωpe

ω
� 1

γ
.

The Raizin effect is that synchrotron radiation travelling through a medium gets cut off at
ω � γωpe. i.e the beaming effect is suppressed19.

6 Absorption and Emission of radiation

We have spent most of the course discussing electromagnetic radiation. Now, we turn to the
process of emission and absorption of this radiation.

The equations of radiative transfer, and the various quantities with in it, deal with macroscopic
conditions and properties that have their origin in microscopic properties. To understand this
better consider a system of 2 discrete energy levels, see Figure 10

Figure 10: Taken from [1], a two level system with separation energy ∆E = hν0. The labels g1

and g2 are the statistical weights.

Einstein identified three processes connecting the two states.

1: Spontaneous Emission. This occurs when the system drops from energy level two to
energy level one. It can occur in the absence of external radiation fields, and is described by
the Einstein A coefficient:

A21 =
Transition probability for spontaneous emission

unit time
. (6.1)

2: Absorption. The system absorbs a photon with energy hν0 and transitions from level one
to level two. This process requires an external radiation field. As photons do not interact the

19Note that the conditions ω � ωpe and ω � γωpe may look incompatible. However, for ultra relativistic
particles it is possible for both to be satisfied.
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transition probability is proportional to the mean intensity (photon density) at the frequency
ν0. The process is described by one of the Einstein B coefficients:

B12J̄ =
Transition probability for absorption

unit time
, (6.2)

with J̄ the mean intensity at ν0.

3: Stimulated Emission. Here the system transitions from level two to level one in the
presence of a photon of energy hν0. This requires an external radiation field, and consistency
with the Planck black body law implies that the transition probability is proportional to the
mean intensity. It is described by another Einstein B coefficient:

B21J̄ =
Transition probability for stimulated emission

unit time
. (6.3)

If the difference between the energy levels gives rise to a line in the spectrum (it cannot be
infinitely sharp) this is described by the line profile function φ(ν). The line profile function is
peaked around ν = ν0, and becomes a delta function in the infinitely sharp limit. It satisfies,∫ ∞

0

φ(ν)dν = 1, (6.4)

and the mean intensity at ν0 is computed from

J̄ =

∫ ∞
0

Jνφ(ν)dν, (6.5)

with Jν the mean intensity.

There are some nice relationships between the Einstein coefficients. These are found by con-
sidering a system in thermodynamic equilibrium, where:

Transitions out of level 1

time Volume
=

Transitions into level 1

time Volume
, (6.6)

or
n1B12J̄ = n2A21 + n2B21J̄ . (6.7)

Here n1, n2 are respectively the number density (concentration) of atoms in level one and level
two.

Some algebra enables us to solve this for J̄ ,

J̄ =
A21

B21

n1B12

n2B21
− 1

. (6.8)

In thermodynamic equilibrium we know that

n1

n2

=
g1e
− E1
kBT

g2e
− E2
kBT

=
g1

g2

e
hν0
kBT , (6.9)
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where E1, E2 are the energies of the two levels.

Thus the mean intensity is

J̄ =
A21

B21

g1B12

g2B21
e
hν0
kBT − 1

. (6.10)

However in thermal equilibrium this should be given by the black body distribution

Bν =
2hν3

c2

1

e
hν
kBT − 1

. (6.11)

Comparing Equations (6.10) and (6.11) we see that the Einstein coefficients are related through:

A21

B21

=
2hν3

c2
⇒ A21 =

2hν3

c2
B21, (6.12)

g1B12

g2B21

= 1, ⇒ g1B12 = g2B21. (6.13)

These relations do not depend on temperature, so they hold outside of equilibrium. Thus if we
can determine one Einstein coefficient, we can determine the other two. Including stimulated
emission is essential to get J̄ to correspond to Planck’s law. It turns out that the photon
emitted during stimulated emission has the same direction, phase, and frequency as the photon
that stimulated its emission.

Absorption and Emission coefficients. The absorption and emission coefficients can be
expressed in terms of the Einstein coefficients. The emission coefficient is

jν =
Energy emitted

time solid angle
=
hν0

4π
n2A21φ(ν). (6.14)

The first fraction is the energy per transition per solid angle, and the n2A21 gives the number
of transitions per time per volume.

We also know that

ανIν =
Energy absorbed

time solid angle volume
=
hν0

4π
n1B12Iνφ(ν), (6.15)

with n1B12Iν the number of transitions per volume per unit time.

Thus the absorption coefficient, uncorrected for the presence of stimulated emission, is

αν =
hν0

4π
n1B12φ(ν). (6.16)

To account for stimulated emission treat it as negative absorption. This implies that

αν =
hν0

4π
(n1B12 − n2B21)φ(ν). (6.17)
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Inverted Populations. We can use the relation g1B12 = g2B21 in the absorption coefficient
to get

αν =
hν0

4π

(
n1B12 − n2

g1

g2

B12

)
φ(ν) =

hν0

4π
n1B12

[
1− g1n2

g2n1

]
φ(ν). (6.18)

In thermal equilibrium the ratio of number densities is

n1

n2

=
g1

g2

e
hν0
kBT , (6.19)

which implies that
g1n2

g2n1

= e
− hν0
kBT < 1, (6.20)

and the absorption coefficient is positive. This is refereed to as the system having a normal
population.

If there is an inverted population, e.g. more atoms in the upper level than the lower level, then

n1

g1

<
n2

g2

. (6.21)

This implies that
g1n2

g2n1

> 1, (6.22)

and the absorption coefficient is negative. We said above that negative absorption corresponds
to stimulated emission. This creates a situation where the intensity increases along a ray, and
leads to the concept of a maser 20 and a laser. The frequency range of the physical processes
determines where the emitted photons are on the electromagnetic spectrum.

A Extra Examples

These are some extra examples, some of which I will present in the tutorial sessions. The
solutions will start to appear after the tutorial sessions.

Example A.1. Problem 9.9 from [2]
Write down the (real) electric and magnetic fields for a monochromatic plane wave of amplitude
E0, frequency ω, and phase angle zero that is

(a) travelling in the negative x-direction and polarised in the z-direction,

(b) travelling in the direction from the origin to the point (1, 1, 1), with polarisation parallel
to the xz plane.

Solution A.1. The solution to this is given in the slides from Tutorial 1.

Example A.2. Problem 9.10 from [2]
The intensity of sunlight hitting the earth is about 1300Wm−2. If sunlight strikes a perfect
absorber, what pressure does it exert? How about a perfect reflector? What fraction of atmo-
spheric pressure does this amount to?

20Microwave amplification by stimulated emission of radiation.
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Solution A.2. The intensity of light hitting the earth is I = 1300Wm−2.

� The radiation pressure on a perfect absorber is related to the intensity through P = I
c

=
4.3× 10−6W .

� For a perfect reflector, we get double the radiation pressure as the reflected radiation exerts
an equal pressure through Newton’s second law. This means that P = 8.6× 10−6W .

Example A.3. Problem 9.33 from [2]
Suppose

~E = A
sin θ

r

[
cos (kr − ωt)− 1

kr
sin (kr − ωt)

]
ϕ̂, with

ω

k
= c. (A.1)

This is the simplest possible spherical wave.

(a) Show that ~E obeys Maxwell’s equations in vacuum, and find the associated magnetic
field.

(b) Calculate the Poynting vector. Average ~S over a full cycle to get the intensity vector ~I.

Does ~I point in the expected direction? Does it fall of like 1
r2

, as it should?

(c) Integrated ~I · d~a over a spherical surface to determine the total power radiated.

B Problems

I will include exercises here and use them for the problem sheets. Both [1] and [2] include
lots of problems so I am likely to use some of those. This will be split up into subsections
corresponding to the topics.

Problem B.1. R&L Problem 2.1 For two oscillating quantities A(t) and B(t), the real parts
of Ae−iωt and Be−iωt with A and B complex, show that the time average is given by

〈AB〉 =
1

2
Re (AB∗) (B.1)

Hint: The time average is give by 〈A〉 = 1
T

∫ T
0
A(t)dt where T is the period of A.

Problem B.2. Telegraph equation

(a) Show that the solutions to the Telegrapher’s equation,

− ∂2

∂x2
~E + µσ

∂

∂t
~E + µε

∂2

∂t2
~E = 0, (B.2)

are damped waves.

(b) Calculate the complex index of refraction defined through

k2 =
ω2n2

c2
, n = n′ + in′′, n′, n′′ ∈ R. (B.3)

The vacuum speed of light is c = 1√
µ0ε0
' 3× 108.
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Problem B.3. Fourier Transform
Calculate the Fourier transform of a Gaussian pulse with width (standard deviation) σ,

f(t) =
1

σ
√

2π
e−

t2

2σ2 . (B.4)

Show that the Fourier transform is again a Gaussian pulse with width σ̃, and that σσ̃ is a
constant.

Hint: Try expressing t2 + iωt as
(
a+ (t+ ib)2) for some a, b. Also recall the Gaussian integral∫∞

−∞ e
−x2dx =

√
π.

Problem B.4. Parseval’s Theorem Show Parseval’s Theorem:∫ ∞
−∞
|E(t)|2dt =

1

2π

∫ ∞
−∞
|E(ω)|2dω. (B.5)

This equality means that the total energy of a signal can be determined either by integrating the
power over time, or by integrating its spectrum over all frequencies.

Problem B.5. Radiation fields
Given the Liénard–Wiechert expression for the vector potential in Eq. (3.14) that

~A(~r, t) =
qµ0

4π

~u(tr)

R(tr)κ(tR)
=
~u

c2
φ(~r, t), (B.6)

show that the magnetic field is given by

~B =
n̂

c
× ~E. (B.7)

Then identify the radiation field component of ~B. Note that we are using the same notation as

in Section. 3, tr is the retarded time, ~R = ~r − ~r0(tr), n̂ =
~R
R

, u(tr) = ~̇r0(tr), and κ = 1− n̂ · ~u
c
.

Problem B.6. Angle of maximum emission
Consider an accelerating charged particle with ~a parallel to the velocity. Given the angular
dependence of the emitted power from Equation (3.47), find the angle at which the emitted
power is maximal.

Problem B.7. Classical Bohr model, Griffiths Problem 11.14
In the Bohr model of the hydrogen atom the electron in its ground state is supposed to travel
in a circle of radius re = 5 × 10−11m, held in orbit by the Coulomb attraction of the proton.
According to classical electrodynamics, this electron radiates, and hence will spiral in to the
nucleus.

(a) Show that ve � c for most of the trip.

(b) Use the Larmor formula, Equation (3.35) to calculate the lifespan of the atom. Hint:Assume
that the electron has a circular orbit.

Problem B.8. Acceleration in different frames
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(a) Show that the transformation of acceleration between frames is given by

ax =
a′x

γ3
(

1 + vu′x
c2

)3 ,

ay =
a′y

γ2
(

1 + vu′x
c2

)2 −
u′yv

c2

a′x

γ2
(

1 + vu′x
c2

)3 ,

az =
a′z

γ2
(

1 + vu′x
c2

)2 −
u′zv

c2

a′x

γ2
(

1 + vu′x
c2

)3 .

Here v the relative velocity between the frames is in the x-direction, (u′x, u
′
y, u
′
z) are the

velocity components of an object in the primed frame, (a′x, a
′
y, a
′
z) are the components of

its acceleration, and (ax, ay, az) are the components of the acceleration in the unprimed
frame. Note: you have solved a similar problem in PY2106 when you considered the
velocity transformation equations.

(b) Now suppose that the primed frame is the instantaneous rest frame of a particle. Show
that in this case

a′‖ = γ3a‖

a′⊥ = γ2a⊥

where ‖ and ⊥ refer to the components parallel to and perpendicular to the direction of
v, respectively.

Problem B.9. Ultra relativistic Electrons
Consider an ultra relativistic electron emitting synchrotron radiation.

(a) Show that the energy of the charge decreases with time according to

γ =
γ0

1 + Aγ0t
, (B.8)

with γ0 the initial value of γ, and find the constant A.

(b) Show that the time for the electron to lose half its energy is

t 1
2

=
1

Aγ0

(B.9)

(c) How is the decrease in γ implied here reconciled with the fact that the equation of motio
implied that γ is constant?

C Vector Calculus Review

There is a nice vector calculus review in [2]. My review is taken from the PY2101 Classical
mechanics notes.
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C.1 Cartesian coordinates

The most familiar coordinate system to everyone is the old familiar Cartesian coordinates with
unit vectors x̂, ŷ, ẑ that do not depend on position. In Cartesian coordinates the position vector
is shown in Fig. 11 and is given by

~r = x x̂+ y ŷ + z ẑ =

xy
z

 (C.1)

The derivative of the position vector is

d~r = dx x̂+ dy ŷ + dz ẑ (C.2)

xx̂

yŷ

zk̂

~r

Figure 11: Cartesian Coordinate system

The key object in vector clculus is the gradient “vector” ∇ given by

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ k̂

∂

∂z
. (C.3)

This differential operator is called Grad or nabla and can act on scalars and vectors. The action
on scalars gives the gradient of the scalar function, a measure of how the function changes in
each direction.

∇f(x, y, z) = x̂
∂f

∂x
+ ŷ

∂f

∂y
+ k̂

∂f

∂z
(C.4)

This is related to the usual expression for the gradient of a function in the following way

df =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz = ∇f · d~r. (C.5)

As ∇ is treated like a vector it can act on vectors through both the scalar and vector. These
are:
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1. The Divergence

∇ · ~A =

(
x̂
∂

∂x
+ ŷ

∂

∂y
+ k̂

∂

∂z

)
·
(
Axx̂+ Ayŷ + Azk̂

)
,

= x̂ · ∂
~A

∂x
+ ŷ · ∂

~A

∂y
+ k̂ · ∂

~A

∂z
,

=
∂Ax
∂x

+
∂Ay
∂y

+
∂Az
∂z

.

Where we have used that the unit vectors do not depend on the coordinates.

2. The curl, which is easiest to express as a the determinant of a matrix

∇× ~A =

∣∣∣∣∣∣
x̂ ŷ k̂
∂
∂x

∂
∂y

∂
∂z

Ax Ay Az

∣∣∣∣∣∣ . (C.6)

There are many useful identities about the interaction of∇,∇·,∇× and their action on products
of vectors, these include:

∇ · (∇f) = ∆f =
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
, (C.7)

∇× (∇f) = 0, (C.8)

∇ ·
(
∇× ~A

)
= 0, (C.9)

∇×
(
∇× ~A

)
= ∇

(
∇ · ~A

)
−∇2 ~A, (C.10)

∇ · (A×B) = (∇× A) ·B − A · (∇×B) , (C.11)

∇× (A×B) = A (∇ ·B)−B (∇ · A) + (B · ∇)A− (A · ∇)B, (C.12)

In the above ∇2 ~A is the vector Laplacian, in general it is defined through this relation but in
Cartesian coordinates it is given by ∇2 ~A = x̂∆Ax + ŷ∆Ay + k̂∆Az.

These operations all become more complicated in other coordinate systems. The two that are
often useful to consider are cylindrical (ρ, ϕ, z) and spherical (r, θ, φ)

C.2 Cylindrical coordinates

The coordinates directions are now (ρ, ϕ, z) with unit vectors ẑ, ρ̂, ϕ̂ that are no longer all
position independent. The coordinate system and the position vector are shown in Fig. 12.
The derivative of the position vector is now

d~r = drρ ρ̂+ drϕ ϕ̂+ drz ẑ (C.13)

Thinking about infinitesimal changes in the position vector we have that drρ = dρ and drz = dz.
However, drϕ = ρdϕ. The volume element is dV = ρdρdϕdz. To see this draw the arc of a
circle with radius ρ and angle dϕ the length of the arc is then rdϕ using the definition of an
angle in radians.
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x

y

z

ϕ

P

ρdϕ

dz

dρ

Figure 12: Cylindrical coordinate system

To compute Grad in cylindrical coordinates go back to d~f = ∇f · d~r, expanding both sides
leads to

df = (∇f)ρ dρ+ (∇f)ϕ ρdϕ+ (∇f)z dz, (C.14)

df =
∂f

∂ρ
dρ+

∂f

∂ϕ
dϕ+

∂f

∂z
dz. (C.15)

Comparing these two expressions gives that

∇ = ρ̂
∂

∂ρ
+ ϕ̂

1

ρ

∂

∂ϕ
+ ẑ

∂

∂z
. (C.16)

As ρ̂ and ϕ̂ both depend on ϕ care is needed when acting on vectors. To evaluate ∇· and ∇×
them the relation between cylindrical unit vectors and Cartesian unit vectors is needed:

ρ̂ = x̂ cosϕ+ ŷ sinϕ, (C.17)

ẑ = z, (C.18)

ϕ̂ = ẑ × ρ̂ = −x̂ sinϕ+ ŷ cosϕ. (C.19)

Thus ∂ρ̂
∂ϕ
, ∂ϕ̂
∂ϕ
6= 0. Taking account of this leads to

∇ · ~A =
1

ρ

∂

∂ρ
(ρAρ) +

1

ρ

∂Aϕ
∂ϕ

+
∂Az
∂z

. (C.20)

Similarly evaluating the curl of a vector in cylindrical coordinates is harder. Going through the
work leads to

∇× ~A =ρ̂

(
1

ρ

∂Az
∂ϕ
− ∂Aϕ

∂z

)
+ ϕ̂

(
∂Aρ
∂z
− ∂Az

∂ρ

)
+ ẑ

1

ρ

(
∂ (ρAϕ)

∂ρ
− ∂Aρ

∂ϕ

)
.

(C.21)
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x

y

z

r

φ

θ

Figure 13: Spherical coordinate system

C.3 Spherical coordinates

Spherical coordinates are (r, θ, φ), with unit vectors r̂, θ̂, φ̂ which again are position dependent.
The position vector shown in Fig. 13 is ~r = rr̂ and its derivative is

d~r = drr r̂ + drθ θ̂ + drφ φ̂ (C.22)

Again thinking about infinitesimals gives drr = dr and drθ = rdθ, and drφ = r sin θdφ. The
volume element is dV = r2 sin θdrdθdφ.

The gradient vector is

∇ = r̂
∂

∂r
+ θ̂

1

r

∂

∂θ
+ φ̂

1

r sin θ

∂

∂φ
(C.23)

The unit vectors are related through

r̂ = î cos θ sinφ+ ĵ sin θ sinφ+ k̂ cosφ, (C.24)

θ̂ = î cos θ cosφ+ ĵ sin θ cosφ− k̂ sinφ, (C.25)

φ̂ = −î sinφ+ ĵ cosφ (C.26)

This leads to a θ and φ dependence. The expressions for∇· and∇× are much more complicated:

∇ · ~A =
1

r2

∂

∂r
(r2Ar) +

1

r sin θ

∂

∂θ
(Aθ sin θ) +

1

r sin θ

∂Aφ
∂φ

, (C.27)

∇× ~A =

(
1

r sin θ

(
∂(sin θAϕ)

∂θ
− ∂Aθ

∂ϕ

)
,

1

r sin θ

∂Ar
∂ϕ
− 1

r

∂(rAϕ)

∂r
,
1

r

[
∂(rAθ)

∂r
− ∂Ar

∂θ

])
(C.28)

If any other expressions are needed then this appendix will be extended.

C.4 Integral Theorems

Armed with an understanding of Gradient, Divergence, and Curl we can now state the two
most important integral theorems that we will need from time to time.
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1. Gauss’s Law/ the Divergence Theorem∮
∂V

~A · d~a =

∫
V

(
∇ · ~A

)
dV. (C.29)

Here V is a volume with boundary, ∂V , and d~a is the normal area element.

2. Stoke’s Law ∮
∂S

~A · d~l =

∫
S

(
∇× ~A

)
· d~a. (C.30)

Here S is a surface with normal area element d~a and boundary ∂S.

D A primer on the Fourier transform

The Fourier transform is a ubiquitous tool in physics and mathematics, it give a decomposition
of a function into eigenfunctions of the Laplacian. The most familiar example is probably
Fourier series in 1D where periodic functions are expressed as the sum of exponential functions
at different frequencies, e.g. for f(t) a function with periodicity T the Fourier series is

f(t) =
∞∑

n=−∞

cne
−inΩt, Ω =

2π

T
the angular frequency. (D.1)

The coefficients are given by an integral over f(t) as is found by considering∫ T
2

−T
2

f(t)eikΩtdt =
∞∑

n=−∞

cn

∫ T
2

−T
2

ei(k−n)Ωtdt =
∞∑

n=−∞

cnTδk,n = Tck. (D.2)

For non-periodic functions this needs to be generalised to the case of continuous frequencies.
This leads to the Fourier transform and it’s inverse:

F (ω) =

∫ ∞
−∞

f(t′)eiωt
′
dt′, (D.3)

f(t) =
1

2π

∫ ∞
−∞

F (ω)e−iωtdω. (D.4)

The continuous frequency variable is ω and the conventions for where to put the factor of
2π differ in different places. Often there will be a 1√

2π
in both terms. However, it can be

more convenient to put the factor entirely in the inverse Fourier transform. Note that for
our purposes the Fourier transform only exists for square integrable functions, f(t) such that∫∞
−∞ |f(t)|2dt <∞.

Example D.1. Single square pulse with width τ and height 1
τ
.

Find the Fourier transform of the signal in Figure 14

The function is defined piecewise as

f(t) =


1

τ
, t ∈ (−τ

2
,
τ

2
)

0, else
(D.5)
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Figure 14: Square wave signal

so the Fourier transform is

F (ω) =
1

τ

∫ τ
2

− τ
2

eiωtdt

=
1

τ

1

iω

(
eiωt
) τ

2

− τ
2

=
1

iωτ

(
ei
ωτ
2 − e−i

ωτ
2

)
=

2

ωτ
sin
(ωτ

2

)
.

The function
sin(ωτ2 )

ωτ
2

is known as the Sinc function and has a peak at ω = 0. Looking at where

F (ω) = 0 we find that the width of F (ω) is given by 4π
τ

= 4π
∆t

. This leads to the time-frequency
uncertainty principle

∆ω∆t = 4π. (D.6)

Contrast this with the uncertainty principle from Quantum mechanics, ∆x∆p ≥ ~
2
.

There is a spatial version of the Fourier transform found by replacing t with the spatial coor-
dinates and ω with the wave vector ~k. This leads to the d-dimensional Fourier transform:

f(t) =
1

(2π)d

∫
dd~kF (~k)ei

~k·~r, F (~k) =

∫
ddrf(~r)e−i

~k·~r, (D.7)

Note that it is conventional to have the opposite signs in the exponential factors relative to the
time Fourier transform.
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