
PY3104 Statistical Thermodynamics

Calum Ross1

Last Updated March 29, 2021

Contents

1 Introduction 2

2 State Variables, the First and Second Law 3
2.1 State Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 First Law of Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Second Law of Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Thermodynamic Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Systems in Thermodynamic Equilibrium 13
3.1 Equilibrium Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Chemical Potential and Gibbs Enthalpy . . . . . . . . . . . . . . . . . . . . . . 16

4 Statistical Thermodynamics 17
4.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Binary Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3 Harmonic Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.4 Particle in a cubic box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.5 * Distinguishable Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.6 Fermions and Bosons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.6.1 Bose-Einstein Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.6.2 Fermi-Dirac Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.7 Maxwell-Boltzmann Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Thermodynamic Ensembles 30
5.1 Thermal equilibrium and entropy revisited . . . . . . . . . . . . . . . . . . . . . 31
5.2 Boltzmann Factor and the Partition Function . . . . . . . . . . . . . . . . . . . 33
5.3 Gibbs Factor and Grand Partition Function . . . . . . . . . . . . . . . . . . . . 37

6 Quantum Gases: Fermi-Dirac and Bose-Fermi distributions 39
6.1 Fermi-Dirac Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.2 Bose-Einstein Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.3 Maxwell-Boltzmann Distribution and the Classical Limit . . . . . . . . . . . . . 42
6.4 Fermi Gases, Density of states, and the Heat Capacity of an Electron Gas . . . . 45
6.5 The Bose Gas and Bose-Einstein Condensation . . . . . . . . . . . . . . . . . . . 51
6.6 Phonons and the Debye Law. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.6.1 The Planck Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

1calumross[at]ucc.ie

1

mailto:calumross@ucc.ie


6.7 *Quasi-particles and Superfluidity in Helium Four. . . . . . . . . . . . . . . . . . 57

7 Transport in Classical Gases 58
7.1 Kinetic Theory of an Ideal Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.2 Transport processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.3 Generalised Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
7.4 Boltzmann Transport Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

8 Heat Conduction Equation 71

A More on Differentials 74
A.1 Exact differentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
A.2 Inexact differentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
A.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

B Mathematical Identities 77
B.1 Useful Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

1 Introduction

These rough lecture notes for PY3104 Statistical Thermodynamics. The course consists of 24
lectures and is based on [Man71, Gue07, KK80] with some extra content from [SS75, AM20].
From [Man71] we will use Chapters 6, 7, 9, 11, and 12 (in first edition this is separate in the
second edition this is merged with chapter 11). Sections with a ∗ next to them were not lectured
and are included for completeness. Another nice reference that is a bit more conversational is
[Atk07], this discusses classical thermodynamics with a chapter focused on each law. The first
part of the course is base on existing lecture notes written by Andy Ruth.

The aim of the course is to give an understanding of how to describe equilibrium and non-
equilibrium states of matter. Calculating macroscopic (thermodynamic) quantities from mi-
croscopic (quantum mechanics/ spectroscopic) properties of matter. There are two strands to
thermodynamics

1. Phenomenological theories: Described in terms of classical concepts such as pressure,
temperature, and volume. They result in relative changes of variables.

2. Statistical theories: Utilise quantum mechanical concepts such as dispersion relations,
particle statistics, etc. These yield absolute values of variables based on time averages/
expectation values.

Some of the key concepts that we will need through out the course include:

� Macrostate: The thermodynamic state of a system. e.g. specification of a system by
thermodynamic properties/ coordinates P, V,B,M, surface tension, surface area, particle
number (N), etc. A macrostate is labelled by these variables e.g. (N,U, V ) or (N,P, T ).

� Microstate: Most detailed specification of the assembly. e.g. in classical kinetic theory of
gases it involves specifying the position and momentum of each of the N particles. Many
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microstates can be consistent with a given macrostate. There is a very large but finite
number of such microstates, called Ω. To give an idea of the size Ω ∼ NN .

� Distributions: These give an in between picture where we do not keep track of the mi-
crostates but just at how the particles are distributed by energy for example. There are
two useful definitions of a distribution:

1. In states: (n1, n2, n3, . . . , nj, . . . ) = {nj} where nj = number of particles in state j
with energy energy εj.

2. In levels: (n1, n2, n3, . . . , ni, . . . ) = {ni} where ni = number of particles in level i.
Here level i means the states with energy εi and degeneracy gi.

t({nj}) = number of microstates consistent with {nj}, is called the statistical weight of
the distribution.

Finally it is useful to state here the laws of thermodynamics that will be useful throughout this
course.

Zeroth Law: Existence of thermodynamic equilibrium.

1st Law: Energy is conserved.

2nd Law: Heat flows spontaneously from high to low temperature.

3rd Law: Entropy is constant at T = 0.

In different contexts people will attribute other laws as laws of thermodynamics. For the most
part these are very context dependent and we will not be concerned with them here.

2 State Variables, the First and Second Law

2.1 State Variables

This section is mostly a revision of the second year course PY2104: Introduction to Thermo-
dynamics and Statistical Physics.

An important basic concept is that of an equilibrium state, sometimes called a thermal state.
This is a state in which all past history is forgotten and all macroscopic quantities cease to
change in time. e.g. dT

dt
= 0. There is no macroscopic flow present. This is similar to the

condition in classical mechanics that equilibrium is when there are no net forces acting on the
system.

Non-equilibrium states then correspond to states where macroscopic quantities depend on time
and space; e.g. heat conduction due to a temperature gradient, diffusion due to a concentration
gradient, electric current, excitation and relaxation processes after laser excitation, etc.

The 0th law of thermodynamics is taken to be the axiom: After a sufficiently long time all
thermodynamic systems will reach a state of equilibrium. In other words there is a spontaneous
tendency of a system to reach an equilibrium state where macroscopic quantities stop evolving
in time.
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The thermodynamic state of a system consisting of many particles (say 1023) can be completely
specified in terms of a few, usually two or three, independent state variables, using appropriate
equations of state. e.g. The ideal gas law, the Van der Waals equation, thermal expansion of
solids, etc. These variables come in two varieties:

� Extensive state variables: Proportional to the size of the system.

� Intensive state variables: Independent of the size of the system.

Here the size of the system means both the spatial extent and the amount of matter in the
system. Examples of these state variables are included in Table. 1

Certain pairs of state variables often occur together as a product. This is because they cor-
respond to generalised forces and generalised displacements, and their product gives a kind of
energy. Some appear in expressions for mechanical work, and others in expressions for heat
and chemical work.

Schematically the relation is Internal energy = Mechanical work & Heat & Chemical work. The
split of variables between the different types of energy is given in Table. 1. The thermodynamic
potentials which are expressed in terms of products of state variables are give in Table. 2.

Extensive Intensive
Mechanical Work Related

Volume, V Pressure, −P
Magnetization, M Magnetic Field, H

Polarization, P Electric Field, E
Area, A Surface Tension, σ

Quantity, X (displacement) Quantity, Y (force)
Heat Related

Entropy, S Temperature, T
Chemical Work Related

Number of Particles, N Chemical Potential, µ

Table 1: Examples of Extensive and intensive variables along with the “type of” energy they
are related to. The minus sign in the pressure is important.

Caloric (Thermal Potentials)
Internal Energy, U

Enthalpy, H
Helmholtz (Free) Energy , F
Gibbs (Free) Enthalpy , G

Grand Potential , J

Table 2: Thermodynamic potentials, some of the crucial objects in study of thermodynamics

There are also response functions, which measure how a material reacts to certain stimuli:
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� Thermal: Heat capacities for response to applying heat, . . .

� Mechanical: Compressibility, Susceptibility e.g. magnetic and electric, . . .

If a system is changed from one equilibrium state, S1, to another, S2, then the amount by
which the state variables change are independent of the chose process, the path taken through
“Phase space”. The energy form, however, depends on the process involved. Hence changes in
state variables correspond to Exact Differentials !

Definition 2.1. A function F (x1, x2) of at least two independent variables, x1, x2 has differ-
ential

dF =

(
∂F

∂x1

)
x2

dx1 +

(
∂F

∂x2

)
x1

dx2, (2.1)

where
(
∂F
∂x1

)
x2

means the derivative of F with respect to x1 holding x2 constant. If F and its

derivative are continuous and(
∂

∂x1

(
∂F

∂x2

)
x1

)
x2

=

(
∂

∂x2

(
∂F

∂x1

)
x2

)
x1

(2.2)

e.g. the partial derivatives commute, then dF is called an exact differential.

Letting c1(x1, x2) =
(
∂F
∂x1

)
x2
, c2(x1, x2) =

(
∂F
∂x2

)
x1

it is straight forward to see that a function

having an exact differential is equivalent to it having the following properties:

(a) The integral of dF depends only on the end points not the path taken,

F (B)− F (A) =

∫ B

A

dF =

∫ B

A

(c1dx1 + c2dx2) . (2.3)

(b) For a closed path the integral of dF vanishes, this follows from the above result about
path independence, ∮

dF =

∮
(c1dx1 + c2dx2) = 0. (2.4)

(c) By integrating dF the function F can be found up to an additive constant.

Exact differentials may be familiar from mechanics or vector calculus where conservative forces
are defined to be the gradient of a potential function. Any function that can be expressed as a
gradient also satisfies the above properties of path independence.
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2.2 First Law of Thermodynamics

The First Law of
Thermodynamics:
Heat is work and work is heat.
Heat is work and work is heat.
Very good!

Thermodynamics by Flanders
and Swann

The first law of thermodynamics is often stated as Energy is conserved. In any system there is
a “store” of energy called the internal energy, labelled U . The internal energy can be changed
in the following way:

� Causing the system to do mechanical work.

� Adding heat, dQ, to the system.

� Adding matter to the system, µdN mechanical work.

As energy is conserved dU is an exact differential given by

dU = dQ− dW + µdN. (2.5)

The sign in front of W is due to the convention of work being done by the system reducing its
energy, this also explains why there is a minus sign in front of P in Table. 1. The mechanical
work is given by

dW = PdV − σdA− EdP −HdM, (2.6)

in this relation E is pared with P and H with M because the polarisation and magnetisation
of a system determine how it responds to an external electric and magnetic field.

It turns out that while dV, dA, dP, dM, and dN are exact differentials the heat (dQ) and the
mechanical work are not exact!. They depend on the path, this means that W and Q are not
state variables. To signify this they are sometimes written as d̄Q and d̄W .

Example 2.2. A good example to have in mind comes from classical mechanics in 1D. The
work is given in terms of the force as dW = ±Fdx, where the exact sign depends on the
conventions for work done. This is exact when the Force is just a function of x, in other words
when the force is conservative and the work is related to the potential energy of a system.
There are many forces which are not conservative, thus the work done due to them is not an
exact differential.

For a system with multiple constituents, e.g. types of particle, Equation. (2.5) generalises to

dU = dQ− Y dX +
∑
i

µidNi (2.7)

where i runs over the constituents. If we were considering Air which is a mixture of different
atomic gases then i would run over the different gases N2, O2, Ar, CO2
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2.3 Second Law of Thermodynamics

The Second Law of
Thermodynamics: Heat won’t
pass from a cooler to a hotter.
You can try it if you like but you
far better notter. ’Cos the cold
in the cooler with get hotter as
a ruler. ’Cos the hotter body’s
heat will pass to the cooler

Thermodynamics by Flanders
and Swann

The second law of thermodynamics can be summarised as Heat flows spontaneously from high
temperatures to low temperatures. The state variable entropy, S, is a measure of the disorder
in a system, it is intimately linked with the second law of thermodynamics. Another way to
state the second law is that for any system undergoing any process the entropy change, dS, of
the system and its surroundings is positive, and approaches zero for a reversible process.

Definition 2.3. A Phenomenological definition of the entropy for a reversible process is

dS =
dQ

T
. (2.8)

Using this definition the second law can then be written as

dS ≥ dQ

T
. (2.9)

Changes in the entropy are related to changes in the extensive state variables U, V,N through
the combination of the first and second laws: the first law states dU = dQ− dW + µdN which
can be re written as

dQ = dU + dW − µdN, (2.10)

leading to a rewriting of the second law as

TdS ≥ dQ = dU + PdV − µdN. (2.11)

Note that the independent natural state variables of the entropy are U, V and N . In other
words they lead to the fundamental definition of other state variables.

As the entropy S(U, V,N) is a state variable, its differential is exact:

dS =

(
∂S

∂U

)
V,N

dU +

(
∂S

∂V

)
U,N

dV +

(
∂S

∂N

)
V,U

dN. (2.12)

For an equilibrium (reversible) process the inequality in Equation. (2.11) is saturates:

dS =
dQ

T
=

1

T
dU +

P

T
dV − µ

T
dN. (2.13)
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Thus we find that

1

T
=

(
∂S

∂U

)
V,N

, (2.14)

P = T

(
∂S

∂V

)
U,N

, (2.15)

µ = −T
(
∂S

∂N

)
V,U

. (2.16)

It is common to take Equation.(2.14) as a definition of temperature, and Equation. (2.16) is
the first of many potential definitions of the chemical potential that we will meet.

The entropy of a system is an extensive, additive state variable. This means that if our system
consists of several independent subsystems the entropy of the total system is the sum of the
subsystem entropies. This is a very useful property, and it is very common to consider the
combination of two subsystems when working with thermodynamic concepts. This is shown in
Figure. 1

Figure 1: A schematic of the addition of the entropy for isolated systems.

As a mathematical exercise we can introduce a scale factor into the entropy, λS(U, V,N) =
S(λU, λV, λN). Differentiating this relation gives

S =
dλS

dλ
,

=

(
∂S

∂λU

)
V,N

dλU

dλ
+

(
∂S

∂λV

)
U,N

dλV

dλ
+

(
∂S

∂λN

)
V,U

dλN

dλ
,

=

(
∂S

∂λU

)
V,N

U +

(
∂S

∂λV

)
U,N

V +

(
∂S

∂λN

)
V,U

N.

(2.17)

At λ = 1 this becomes

S =
U

T
+
PV

T
− µN

T
, (2.18)

which rearranges to give
U = TS − PV + µN. (2.19)

Equation. (2.19) is known as the Euler relation, sometimes Euler equation, and is useful for
deriving other thermodynamic relations.
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2.4 Thermodynamic Potentials

... as if by magic- but actually
by mathematics- the leakage of
energy from a system as work is
automatically taken into
account by focusing on the
change in enthalpy.

Four Laws That Drive the
Universe by Peter Atkins

A state variable is called a thermodynamic potential with respect to a complete set of state
variables, if knowledge of the state variables is sufficient to determine all other state variables.
The entropy S(U, V,N) is one example of a thermodynamic potential. It is a particularly im-
portant one as it governs equilibrium conditions. Many thermodynamic potentials, the related
state variables, and their Euler relations are summarised in Table. 3 at the end of this section.

Consider the internal energy U(S, V,N) as a state variable. Its differential is exact:

dU =

(
∂U

∂S

)
V,N

dS +

(
∂U

∂V

)
S,N

dV +

(
∂U

∂N

)
V,S

dN, (2.20)

comparison of this with the first law from Equation. (2.5) (dU = TdS − PdV + µdN) we find

T =

(
∂U

∂S

)
V,N

, (2.21)

−P =

(
∂U

∂V

)
S,N

, (2.22)

µ =

(
∂U

∂N

)
V,S

. (2.23)

The third relation, Equation. (2.23), gives another way to define the chemical potential.

From the above relations we see that the temperature governs the flow of energy, while the
chemical potential governs the flow of mass.

The two thermodynamic potentials S(U, V,N) and U(S, V,N) are not particularly practical
since entropy cannot be directly measured in experiments. Temperature is an easier quantity
to measure and control. Thus it is be better to use T, V,N as the independent variables. The
Helmholtz free energy, F (T, V,N) is the relevant thermodynamic potential in this case. It is
related to the internal energy through the Legendre transform2

F = U − TS. (2.24)

2Legendre transforms may be familiar to some of you from classical mechanics where they relate the La-
grangian and Hamiltonian interpretations. The occurrence of Legendre transforms in both classical mechanics
and thermodynamics hints at a relationship between the two subjects. We will not discuss this here but there
are a very nice series of blog posts by John Baez discussing this, see Classical Mechanics versus Thermodynamics
for the first post.
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This implies that dF = dU −TdS−SdT which combines with the first law, expressed through
Equation. (2.5), to give

dF = −SdT − PdV + µdN. (2.25)

Again we make use of this being an exact differential to compare with

dF =

(
∂F

∂T

)
V,N

dT +

(
∂F

∂V

)
T,N

dV +

(
∂F

∂N

)
V,T

dN. (2.26)

This comparison yields the relations

−S =

(
∂F

∂T

)
V,N

, (2.27)

−P =

(
∂F

∂V

)
T,N

, (2.28)

µ =

(
∂F

∂N

)
V,T

, (2.29)

where again we find a new way of expressing the chemical potential, as you can probably guess
we will find one for every thermodynamic potential which is expressed as a function of the
number of particles3 N .

Example 2.4. As a brief aside we can use the relationship between P and F to get an inter-
pretation of pressure as split into energy and entropy related pieces. This is demonstrated in
the following way,

P = −
(
∂F

∂V

)
T,N

= −
(
∂U

∂V
− T ∂S

∂V
− S ∂T

∂V

)
T,N

= −
(
∂U

∂V
− T ∂S

∂V

)
T,N

= −
(
∂U

∂V

)
T,N

+

(
T
∂S

∂V

)
T,N

,

where the first term on the last line is the energy pressure which is dominant in solids, and the
second term is the entropy pressure which is dominant in gases. Going between the second and
third line the derivative of T disappears as the differentiation is being carried out at constant
T .

As we have seen in the three cases above, thermal state variables are derived from the thermo-
dynamic potentials. By considering derivatives of thermal state variables such as P, V, T, and

3This is an example of a deep underlying principal, that N and µ are canonically conjugate variables. This is
true for all of the pairs of state variables that appear together in thermodynamic potentials: they are conjugate
variables; one is a generalised position and the other is a generalised force. Again this formalism hints at a
familiar picture from the Hamiltonian picture of classical mechanics.
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S we get relationships between them. These relationships are called Maxwell relations, they
follow from the fact that the thermodynamic potentials have exact differentials.

Examples of Maxwell relations are included in the problems for the course.

Alongside temperature, pressure is a quantity which is easy to measure and control. Considering
(T, P,N) as the independent variables leads to a fourth thermodynamic potential, the Gibbs
free enthalpy

G(T, P,N) = F + PV = U − TS + PV. (2.30)

Its differential is

dG = dF + PdV + V dP = dU − TdS − SdT + PdV + V dP, (2.31)

as will be familiar by now we use Equation. (2.5) to re express it as

dG = −SdT + V dP + µdN. (2.32)

Next we compare with the exact differential

dG =

(
∂G

∂T

)
P,N

dT +

(
∂G

∂P

)
T,N

dP +

(
∂G

∂N

)
P,T

dN (2.33)

to find the relations

−S =

(
∂G

∂T

)
P,N

, (2.34)

V =

(
∂G

∂P

)
T,N

, (2.35)

µ =

(
∂G

∂N

)
P,T

. (2.36)

Finally if we consider the independent state variables (S, P,N) the enthalpy is the relevant
thermodynamic potential

H(S, P,N) = U + PV. (2.37)

Its differential can be written as

dH = dU + PdV + V dP = TdS + V dP + µdN. (2.38)

The differential being exact leads to

T =

(
∂H

∂S

)
P,N

, (2.39)

V =

(
∂H

∂P

)
S,N

, (2.40)

µ =

(
∂H

∂N

)
S,P

. (2.41)
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Figure 2: A square summarising the Legendre transformations relating four of the most com-
moly used thermodynamic potentials.

The relationship between the internal energy, enthalpy, Helmholtz free energy, and Gibbs free
enthalpy are nicely summarised in Figure. 2

These thermodynamic potentials are all related through Legendre transformations for a closed
system, i.e the particle number N is a constant. As shown in Table. 3 there are thermodynamic
potentials, such as the grand canonical potential J , which describe open systems where N is
allowed to change.

Another convenient way to keep track of the thermodynamic potentials and their relationships
is through the diagram in Figure. 3

Figure 3: The natural state variables on are on either side of the relevant thermodynamic
potential. The partial derivative of the potential with respect to a natural variable results in
the opposite natural variable, going against the arrow results in a minus sign.

In Table 3 the first four thermodynamic potentials are suited for an isolated system, where

12



State Variables Thermodynamic Potentials Euler Relations Gibbs Equations
S, V,N U U = TS − PV + µN dU = TdS − PdV + µdN
S, P,N H = U + PV H = TS + µN dH = TdS + V dP + µdN
T, V,N F = U − TS F = −PV + µN dF = −SdT − PdV + µdN
T, P,N G = U − TS + PV G = µN dG = −SdT + V dP + µdN

U, V,N S S = U
T

+ PV
T
− µN

T
dS = dU

T
+ PdV

T
− µdN

T
1
T
, V,N Φ = S − U

T
Φ = PV

T
− µN

T
dΦ = −Ud

(
1
T

)
+ PdV

T
− µdN

T

U, P
T
, N Ψ = S − PV

T
Ψ = U

T
− µN

T
dΨ = dU

T
− V d

(
P
T

)
− µdN

T
1
T
, P
T
, N Υ = S − U

T
− PV

T
Υ = −µN

T
dΥ = −Ud

(
1
T

)
− V d

(
P
T

)
− µdN

T

S, V, µ I = U − µN I = TS − PV dI = TdS − PdV −Ndµ
T, V, µ J = U − TS − µN J = −PV dJ = −SdT − PdV −Ndµ
S, P, µ K = U + PV − µN K = TS dK = TdS + V dP −Ndµ
T, P, µ L = U − TS + PV − µN L = 0 dL = −SdT + V dP −Ndµ = 0

Table 3: A table summarising all of the Thermodynamic potentials, state variables, and their
relationships. When µ becomes a state variable we are considering systems where the particle
number N can change. J is called the grand canonical potential.

energy and mass do not mix between the system and its surroundings. The next four are best
suited to closed system, heat is transferred between a system and its surroundings but matter
is not. The final four are adapted to open systems, where mass and energy is transferred
between the system and the surroundings. Later in the course we will encounter different
thermodynamic ensembles corresponding to the case of isolated, closed, and open systems.

3 Systems in Thermodynamic Equilibrium

The zeroth law implies the
existence of a criterion of
thermal equilibrium.

Four Laws that Drive the
Universe by Peter Atkins

3.1 Equilibrium Conditions

Equilibrium is characterised through the behaviour of the entropy and the second law. This is
because irreversible processes cause the entropy to increase, dS > 0. Upon reaching equilibrium4

there are only equilibrium processes, the entropy then attains a maximum value S = Smax and
is no longer changing5, dS = 0. This is the maximum value subject to some constraints on

4Remember, equilibrium is a dynamical process. While the macroscopic state variables are not changing in
time the system is not static. For example, in diffusive equilibrium particles are still moving between the two
parts of the system. However, the chemical potential has been equalised between the two parts of the system.

5This is the entropy of the total process including the system and its surroundings. The individual reversible
processes can lead to small changes in entropy, which are balanced by entropy changes in other parts of the
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the state variables, referred to as side conditions, determined by the system and experimental
conditions.

To define equilibrium we need to find this extreme value subject to the side conditions. One way
to do this is to use the variational principle; consider a thermodynamic potential S(U, V,N)
and infinitesimally change the state variables U, V,N → U + δU, V + δV,N + δN . If the
thermodynamic takes an extremal value, a maximum or minimum, then we want it to be
invariant under these changes, e.g δS = 0. In other words at equilibrium the Thermodynamic
potential is invariant with respect to the variation of state variables. Imposing this condition
leads to relationships between thermodynamic variables, the equilibrium conditions!

In our example

δS =

(
∂S

∂U

)
δU +

(
∂S

∂V

)
δV +

(
∂S

∂N

)
δN, (3.1)

and the equilibrium conditions are

∂S

∂U
= 0, (3.2)

∂S

∂V
= 0, (3.3)

∂S

∂N
= 0. (3.4)

It is important to remember that this is the total entropy! It is split up into pieces for the
surroundings and every component of the system.

More generally for the entropy the equilibrium condition is δS = 0, S is an extremal values,
and δ2S < 0, it is a maximum.

Depending on the system different Thermodynamic potentials will be best suited to describing
equilibrium. To find the conditions for the other potentials we use the first and second laws of
thermodynamics and consider a variation in the heat with N held constant:

� δQ = dU + PdV so dU ≤ TdS − PdV ,

� δQ = dH − V dP so dU ≤ TdS + V dP ,

� δQ = dF + TdS + SdT + PdV so dF ≤ −SdT − PdV ,

� δQ = dG+ TdS + SdT − V dP so dG ≤ −SdT + V dP .

These are not universal conditions as they depend on the side conditions. Extremising the
thermodynamic potentials, in the manner outlined above leads to the equilibrium conditions:

� δU = 0, S and δ2U > 0, U is minimised,

� δH = 0, S and δ2H > 0, H is minimised,

� δF = 0, S and δ2F > 0, F is minimised,

� δG = 0, S and δ2G > 0, G is minimised.

process and in the environment.
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3.1.1 Examples

Example 3.1. Flow of energy
Consider a gas in a box, split into two pieces separated by a rigid, perfectly insulating dividing
wall. In the insulated system the two compartments have different internal energies, volumes,
and particle numbers. The difference in internal energy results in the two compartments having
a different temperature. For the total system the state variables are the sum of those of the
components; U = U1 + U2, V = V1 + V2, and N = N1 + N2. This is an isolated system so
N, V, U are all constant for the whole system.

Figure 4: A system consists of two boxes initially separated by a perfectly rigid insulating wall.
If the insulation is removed the wall will conduct heat until the equilibrium is reached

The thermodynamic potential to work with is the entropy, S(U, V,N). The compartments
exchange heat, dQ until the system reaches equilibrium.

The rigid solid walls imply that dVi = 0 = dNi. The equilibrium condition is that S = Smax.
The internal energy of the compartments change due to the exchange of heat.

U2 = U − U1, δU2 = −δU1. (3.5)

This implies that

δS =

(
∂S

∂U1

)
δU1 +

(
∂S

∂U2

)
δU2 (3.6)

=

(
∂S

∂U1

− ∂S

∂U2

)
δU1 (3.7)

=

(
1

T1

− 1

T2

)
δU1, (3.8)

this vanishes when the temperatures agree T1 = T2. This is called the condition for thermal
equilibrium.

Example 3.2. Flow of matter
Consider gas in two boxes sitting in a temperature bath. The boxes are connected by a pipe
with a valve in it. When the valve is open particles can move between the two boxes. The
boxes can both exchange heat with the reservoir and we will assume that they are in thermal
equilibrium.

Initially the valve is closed and N1 6= N2, µ1 6= µ2. For the total system we have that T =
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Figure 5: A system consists of two boxes in thermal equilibrium. A pipe connects the boxes
that particles can flow through.

constant, V = V1 + V2, and N = N1 + N2. When the valve is open the boxes will exchange
particles until they are in equilibrium, in this case diffusive equilibrium.

0 = dN = dN1 + dN2 ⇒ dN1 = −dN2. (3.9)

Contact with the reservoir and the rigidity of the walls imply that dT = 0 = dVi.

The easiest thermodynamic potential to work with is the Helmholtz free energy, F (T, V,N).
Equilibrium is when F is minimised subject to changes in the particle numbers. This implies
that

(δF )T,V,N =

(
∂F

∂N1

)
T,V

δN1 +

(
∂F

∂N2

)
T,V

δN2 (3.10)

=

[(
∂F

∂N1

)
T,V

−
(
∂F

∂N2

)
T,V

]
δN1 (3.11)

= [µ1 − µ2] δN1, (3.12)

this vanishes when the diffusive equilibrium condition is satisfied, µ1 = µ2.

You will consider mechanical equilibrium on the first problem sheet.

From the examples and the problem sheet we see that: Temperature controls the flow of
energy; µ governs the flow of mass; and pressure governs the “flow” of work. Systems are in
both thermodynamic and diffusive equilibrium if µ1 = µ2 and T1 = T2.

3.2 Chemical Potential and Gibbs Enthalpy

The Gibbs free enthalpy is closely related to the chemical potential. The Euler relation U =
TS − PV + µN leads to

µ =
G

N
. (3.13)

This expression gives the intuition that the chemical potential is some sort of “energy” per
particle.
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In the presence of a potential difference there will be another contribution to the chemical
potential, called the external chemical potential.

More to follow

4 Statistical Thermodynamics

The aim of statistical
thermodynamics is to make a
bridge between the
over-elaborate detail of
mechanics and the obscure
generalities of thermodynamics.

Statistical Physics by Tony
Genault

4.1 Basics

Thermodynamic entities, or particles, can be: atoms, molecules, electrons, photons, oscillators,
etc. Generally we assume that a single type of particles and that there are N identical, or
indistinguishable, particles. These N particles constitute a system, also called an assembly. A
collection of assemblies, all constructed in the same way, is called an ensemble.

The energy of every entity is quantised. From the distribution of entities in the system among
its quantum states, e.g atomic orbitals. Macroscopic properties, state variables, are determined
from expectation values of this distribution.

The key definitions that we saw in the introduction are

� Microstate: specified by the number of particles in individual quantum states. These
states can be degenerate, have the same energy, and the “extra” states are counted.

� Macrostate (system configuration): A state of the system where the distribution of parti-
cles over individual quantum states is specified. e.g. number of particles in each quantum
state is specified.

� Thermodynamic probability (wk): Number of microstates in a macrostate k. Strictly
speaking this is not a probability as it has not been normalised, this is done by dividing
by the total number of microstates.

� Statistical weight (multiplicity): Number of microstates in a system, Ω =
∑

k wk.

Generally the statistical weight is a function of the state variables, Ω(U, V,N).

4.2 Binary Model

We now turn to our first example of a statistical mode; a binary system for a particle with
spin. Consider an electron in the ground state of a hydrogen atom. This electron has either
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spin up or spin down, there is a binary choice for its spin. This electron is like a coin with spin
up corresponding to heads and spin down corresponding to tails.

A natural question is, how many ways are there for N spins to be arranged? In other words for
a gas with N hydrogen atoms, how many arrangements are there for the electrons? Another
way to phrase this is to ask how many configurations are there with k spin ups.

Saying that a configuration has k spin ups is specifying the macrostate, a microstate corresponds
to specifying the spin of all N electrons with k of those having spin up. Thus every microstate
with k spin ups corresponds to the same macrostate.

Example 4.1. Binary System
Let us consider the possible microstates for N atoms when N is small. This is shown in Figure 6

Figure 6: Microstates and macro states for binary spin system with N = 1, 2, 3 atoms.

The number of microstates in a macrostate follows the pattern of Pascal’s triangle as shown
in Figure 7. The averaging postulate, or the principle of statistical inevitability, says that the
most probably macrostate is the one consistent with the largest number of microstates.

N = 0 1
N = 1 1 1
N = 2 1 2 1
N = 3 1 3 3 1
N = 4 1 4 6 4 1
N = 5 1 5 10 10 5 1
N = 6 1 6 15 20 15 6 1

Figure 7: The number of microstates in a given macrostate for an N -particle binary system
follows Pascal’s triangle.
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The numbers in Pascal’s triangle correspond to the coefficients in the binomial expansion,

(x+ y)N =
N∑
k=0

N !

(N − k)!k!
xN−kyk. (4.1)

In this expression we can think of x as being ↑ for spin or heads for the coin, and y as being ↓
for spin or tails for the coin. As some more notation, k = N↑ is the number of ↑ spins in the
macrostate, and N − k = N↓ is the number of ↓ spins in the macrostate.

From Equation (4.1) we can read off that the thermodynamic probabilities and Ω:

wk(N) =
N !

(N − k)!k!
, (4.2)

Ω =
N∑
k=0

wk(N) = 2N . (4.3)

The statistical weight is extremely large for a large collection of spins. For example for N = 50
Ω ' 1014 and for a mole of spins Ω ' 21023 .

The general approach is to find wk(N) as a function of k for a given large N . The principal of
statistical inevitability 6 then says that the macrostate with the largest number of microstates
is the most probable and determines the macroscopic properties of the system. e.g. it is the
equilibrium state. The sum over wk(N) then yields the statistical weight.

Include an example figure here.

4.3 Harmonic Oscillator

Our next example is to consider a system of harmonic oscillators, e.g. atoms in a crystal lattice7.
From the Schrödinger equation we know that the eigenfunctions for the harmonic oscillator are
the non-degenerate Hermite polynomials with eigenvalues

εn =

(
n+

1

2

)
hν = nε+

hν

2
. (4.4)

The integer n is called the quantum number and determines the energy level. Here we will
redefine the energy so that it starts at 0 for n = 0, εn → εn − hν

2
. Here we will assume that

there are three oscillators, N = 3, but everything works for general N . We also assume the
system is at temperature T with total energy E = 3ε, this is the energy available to the system
above the zero point energy. A natural question is: How can the energy be distributed among
the states?

(1) If the oscillators are distinguishable:

6Also known as the averaging postulate.
7It is only in the first order approximation that we can think of a crystal as a series of uncoupled oscillators,

there will be corrections to this coming from coupling between atoms. However, the first order approximation
can get us surprisingly far
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Figure 8: Three distinguishable harmonic oscillators.

(a) Oscillators are allowed to occupy the same states.

(2) If the oscillators are indistinguishable:

(a) Oscillators are allowed to occupy the same states.

(b) Oscillators are not allowed to occupy the same states.

We will encounter type (2) in detail when we talk about Bosons and Fermions. First focus on
type (1), distinguishable oscillators. The energy spectrum of an oscillator is given in Figure 9.

Figure 9: The energy spectrum of a quantum mechanical harmonic oscillator.

We call the number of oscillators with energy εi the occupation number of the i’th energy
level and denote it ni. The sum of the occupation numbers is the total particle number,
N =

∑
j nj = 3 and the total energy is E =

∑
j njεj = 3ε. The macrostates are labelled by

the occupation number of the zero’th energy level, k = n0. The microstates and macrostates
are shown in Figure 10

20



Figure 10: The micro states of the 3-oscillator system. On the top left the microstate has
n0 = 0, n1 = 3, n2 = 0, n3 = 0 and is the only microstate in the k = 0 macrostate, w0 = 1. The
top right is the k = 1 macrostate with 6 microstates, n0 = 1, n1 = 1, n2 = 1, n3 = 0. On the
bottom is the k = 2 macrostate with 3 microstates, n0 = 2, n1 = 0, n2 = 0, n3 = 1.

In general the number of microstates is given by

Ω =
∑
k

wk =
(N + nmax − 1)!

nmax! (N − 1)!
. (4.5)

When N = 3 and nmax = 3 this becomes Ω = 10.

If the oscillators are indistinguishable, but allowed to occupy the same state, then there are
less microstates, in the k = 1 macrostate we can no longer tell the difference between the 6
microstates. While when the oscillators are not allowed to occupy the same state there is only
the k = 1 macrostate. The N = 3, E = 3ε case of indistinguishable oscillators is shown in
Figure 11.

Figure 11: The macro states for 3 indistinguishable harmonic oscillators.

Note that the number of microstates is always smaller when the entities, here oscillators, are
indistinguishable. There are more accessible states if there is no restriction on occupation
number.

4.4 Particle in a cubic box

Consider another familiar situation, that of quantum mechanical particles in a cubic box.
Assume 3 particles in a cubic box with side length L, volume V = L3. From the Schrödinger
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equation Hψ = Eψ the eigenfunctions and eigenvalues are found to be:

ψnx,ny ,nz(x, y, z) = c sin
(nxπx

L

)
sin
(nyπy

L

)
sin
(nzπz

L

)
, (4.6)

Enx,ny ,nz =

(
n2
x + n2

y + n2
z

)
π2~2

2mL2
, (4.7)

the quantum numbers describing the states are nx, ny, nz, these are positive integers 1, 2, 3, · · · .
The quantum numbers determine what form the wavefunction has in each direction.

Include figure of the cubic box

It is conventional to redefine the energy so that the lowest energy state nx, ny, nz = 1, 1, 1 is
thought of as the zero energy state and the energies of the other states are given in terms of
E = E1,1,1. The energy spectrum is given in Figure 12. The gi’s are the degeneracy of energy
level εi, that is how many states have the same energy. These degenerate states are all counted
separately.

Figure 12: The energy spectrum of a quantum mechanical harmonic oscillator.

The total number of microstates Ω depends on U, V,N and whether particles are distinguishable
or indistinguishable. As N and or U increases the number of microstates increases massively,
the number of microstates also increases. This can be seen in the oscillator example if you
considered N = 4, E = 4ε or N = 3, E = 4ε.

As a generic example, consider a set of energy levels, εi, with degeneracies gi and occupation
numbers ni. The example of an arbitrary microstate is shown in 13.

The general fundamental assumption of statistical thermodynamics can be stated as: In an
isolated system all accessible quantum states are assumed to be equally probably. e.g. all
microstates are equally probable.

A microstate is accessible if its properties are compatible with the physical specifications of the
system; it satisfies the constraints

N =
∑
i

ni, U =
∑
i

niεi. (4.8)
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Figure 13: The energy spectrum of a quantum mechanical harmonic oscillator.

In other words the overall energy of a microstate must be in the range of energy specified for the
energy of the system. The number of particles must also be in the same range as the specified
number of particles of the system8.

4.5 * Distinguishable Particles

This is essentially a reproduction of parts if Chapter 2 of [Gue07]. However, I think that it is
important enough to state here as well. We will come back to some of these results later in the
course.

Consider a system of N indistinguishable, localised, particles in a fixed volume V , with fixed
internal energy, U . The system is mechanically and thermally isolated so that T, S and other
stte ariables are well defined.

The one particle states are labelled by an integer i = 0, 1, 2, . . . , the corresponding energies εi
may have degeneracies, gi meaning that multiple states have the same energy. States depend
on the volume per particle V

N
. The distribution is the set of occupation numbers, {ni} such

that
N =

∑
i

ni, U =
∑
i

niεi. (4.9)

As prticles are distinguishable they can be counted. A microstate then specifies the state for
each distinct particle. We want to know the total number of microstates for an allowable
microstate, e.g possible arrangements of N objects into piles with ni objects in the i’th pile;
The answer is

wk =
N !∏
i ni!

. (4.10)

8These can be summarised as δU
U � 1 and δN

N � 1. In practice we will just impose the constraints.
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The averaging postulate states that the thermal distribution is obtained by evaluating the
average distribution {ni}av. e.g. weighted average of all possible distributions.

The key point is that there is one particular distribution {n∗i } which is much more probable
than any others. e.g wk is sharply peaked around {n∗i }. The total number of microstates,
Ω =

∑
k wk can be approximated by the maximum value of wk, w

∗
k for {n∗i }.

This now means hat we need to find w∗k and {n∗i }. It is easier, and more convenient to work
with log(wk):

log(wk) = log(N !)−
∑
i

log(ni),

= (N logN −N)−
∑
i

(ni log ni − ni) ,

where we have assumed that the n’s are large enough to use Stirling’s approximation9. To find
the maximum differentiate this, and use that N is constant;

d log(wk) = 0−
∑
i

(
dni log ni +

nidni
ni
− dni

)
= −

∑
i

dni log ni

= −
∑
i

log n∗i dni =! 0

In the last line we have replaced ni with it’s maximum value n∗i , and dni being the distance
between the value ni and the maximum value. The =! 0 is because we are solving for the
maximum. Differentiating the constraints leads to the conditions:

0 = dN =
∑
i

dni, (4.11)

0 = dU =
∑
i

εidni (4.12)

Impose these using Lagrange multipliers, α, β,

d logwk + α
∑
i

dni + β
∑
i

εidni =
∑
i

(− log n∗i + α + βεi) dni = 0, (4.13)

∀α, β. Can write this such that each term is zero, as the dni are independent for each i. This
fixes α and β. Implies that n∗i is given by

(− log n∗i + α + βεi) = 0, (4.14)

for specific, but as yet undetermined α and β,

⇒ n∗i = exp (α + βεi) . (4.15)

9The approximation is that N ! ' (2πN)
1
2 NN exp (−N), or taking logarithms and discounting the constant

term, logN ' N logN −N .
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This is known as the Boltzmann distribution. Determining α and β is the next challenge. They
re determined by the constraints.

N =
∑
i

ni = eα
∑
i

eβεi , (4.16)

with eα = A a normalisation factor. Can also write A = N
Z

for the partition function

Z =
∑
i

eβεi (4.17)

and

ni =
N

Z
eβεi . (4.18)

We will see a lot more about the partition function later10. The other Lagrange multiplier β is
more subtle, it is related to the temperature:

U =
∑
i

εini =
N

Z

∑
i

εie
βεi (4.19)

or
U

N
=

∑
i εie

βεi∑
i e
βεi

(4.20)

determines β. U
N

is the internal energy per particle, and for a given U, V,N macrostate it fully
specifies β. Through this we can interpret β. as a potential for the energy.

We will see later that β = 1
kBT

, for kB Boltzmann’s constant. Note that some times there is a
minus sign in the definition of β, for example in [Gue07].

4.6 Fermions and Bosons

The nature of the entities that make up a many body system has a profound effect on the states
of the system. Quantum theory results in two rules for non-interacting particles:

(1) A state can be occupied by an integral number of particles of the same species, including
zero. These particles are called Bosons, e.g. photons of light.

(2) A state can be occupied by 0 or 1 particles of the same species. These particles are called
Fermions, e.g. electrons and protons.

The second rule is known as the Pauli exclusion principle, it says that no two fermionic particles
can have identical quantum numbers.

There is a classical limit where the quantum nature of the particles does not matter for the
thermal average occupancy. All that matters is if they can occupy the same state or not. We
will return to the quantum nature later on in the course.

10This is in fact the partition function for the canonical ensemble, or the canonical partition function. We
will discuss the different ensembles later.
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The thermodynamic probability, wk, of a macrostate depends on the particle statistics (Bose-
Einstein or Fermi-Dirac) obeyed by the system. The probability of finding a system in a specific
macrostate k is

pk =
wk
Ω
. (4.21)

The probability of finding a system in a specific microstate i is pi = 1
Ω

.

4.6.1 Bose-Einstein Statistics

We want to describe the distribution of a bosonic system. Particles are indistinguishable, non-
interacting and there is no restriction on the number of particles that can occupy any state.
While the particles are indistinguishable, the states are known and distinguishable. We want
to derive the thermodynamic probabilities, wk, and the number of microstates, ΩBE.

Figure 14: A generic configuration of bosons with energy εi. Pretending the particles are
distinguishable, this configuration corresponds to the sequence 1ab2c34def .

A generic energy level of a bosonic system is shown in Figure 14,the states are labelled by the
numbers and pretending that we can distinguish the particles we label them a, b, c, . . . . Every
energy level thus corresponds to a sequence of letters and numbers:

1ab2c34def (4.22)

� The degeneracy gi is the number of numbers in the sequence.

� The occupation number ni is the number of letters in the sequence.

Such a sequence always starts with a number, so there are gi − 1 + ni symbols left to specify.
Generically for N objects there are N ! ways to arrange them, e.g. 3! = 6 ways to arrange
three objects. Thus after specify the initial number there are (gi − 1 + ni)! ways to arrange
the rest of the sequence. There are gi possible starting numbers so the number of sequences is
gi (gi − 1 + ni)!.

We seem to be done, but this actually over counts the number of sequences. For example

[1ab] [2c] [3] [4def ] = [3] [1ab] [4def ] [2c] , (4.23)

as what matters is which states are occupied and what the occupation numbers are rather than
how the states are ordered. There are gi such groups so gi! ways to order the groups. Thus we
need to divide by gi! to avoid counting identical states multiple times.
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Finally we need to remember that the particles are indistinguishable, this requires dividing by
the number of ways of ordering ni particles, ni!.

This implies that the number of possible arrangements for the energy level εi is

ωi =
gi (gi − 1 + ni)!

gi!ni!
=

(gi − 1 + ni)!

(gi − 1)!ni!
. (4.24)

In Figure 15 the possible configurations for an energy level with ni = 2, gi = 3 is shown. For

Figure 15: Possible configurations for ni = 2 bosons with gi = 3. Here ωi = (3−1+2)!
(3−1)2!

= 4!
2!2!

= 6.

each possible configuration of a single energy level, the other energy levels may have any other
configuration. Therefore the thermodynamic probability is the product of all the ωi’s:

wBE = wk =
∏
i

ωi =
∏
i

(gi − 1 + ni)!

(gi − 1)!ni!
, (4.25)

and the total number of microstates is ΩBE =
∑

k wk.

Example 4.2. Example with N = 6, U = 6ε, gi = 3,Ω = 1532

4.6.2 Fermi-Dirac Statistics

In a similar vein to the last section on Bose-Einstein statistics the particles are indistinguishable
and non-interacting. However, in contrast to the Boson case the Pauli exclusion principle holds
and there is either one or zero particles in each permitted state. The states are again known
and distinguishable. We derive the thermodynamic probabilities and the statistical weight.

Consider a generic energy level of a fermionic system, as shown in Figure 17. Pretending that the
particles are distinguishable we can assign a sequence of letters and numbers, 1a2b34c5, which
describes the occupation of state i with fermions. Noting the constraint ni < gi, there are gi

27



Figure 16: Possible configurations, and the corresponding thermodynamic probability for N =
6, U = 6ε, gj = 3. The statistical weight is ΩBE = 1532. n̄j = Ω−1

∑
k (nj)k wk, is the average

occupation number for energy level j.

Figure 17: A generic configuration of bosons with energy εi. Pretending the particles are
distinguishable, this configuration corresponds to the sequence 1ab2c34def .

options for the first letter/ particle, gi−1 choices for the second letter/ particle, . . . gi−(ni − 1)
options to place the last letter/ particle. This implies that there are

gi (gi − 1) . . . (gi − (ni − 1)) (4.26)

ways to place nj distinguishable fermions into the gi states. Next observe that

gi! = gi (gi − 1) . . . (gi − (ni − 1)) (gi − ni) · · · 2× 1 = gi (gi − 1) . . . (gi − (ni − 1)) (gi − ni)!.
(4.27)

The first ni terms gives the number of sequences that we found above, thus the rewriting

gi (gi − 1) . . . (gi − (ni − 1)) =
gi!

(gi − ni)!
(4.28)

gives a more convenient expression for the number of sequences. Recalling the particles are
really indistinguishable we divide by ni! to avoid over counting and find

ωi =
gi!

(gi − ni)!ni!
. (4.29)
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Figure 18: Possible configurations for ni = 2, gi = 3 fermions. ωi = 3!
(3−2)!2!

= 6
2

= 3.

Figure 15 shows the possible configurations for an energy level with ni = 2 fermions and gi = 3.

Finally taking the product of this for all energy levels gives the thermodynamic probability,

wk =
∏
i

ωi =
∏
i

gi!

(gi − ni)!ni!
. (4.30)

Example 4.3. Example with N = 6, U = 6ε, gi = 3,ΩFD = 73

Figure 19: Possible configurations, and the corresponding thermodynamic probability for N =
6, U = 6ε, gj = 3. The statistical weight is ΩFD = 73. n̄j = Ω−1

∑
k (nj)k wk, is the average

occupation number for energy level j.

4.7 Maxwell-Boltzmann Statistics

Now we turn to classical particles. Here the particles are distinguishable, non-interacting,
and there is no restriction on how many particles can occupy a state. Again the states are
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distinguishable. Before finding wk we first give the example in Figure 20 of ni = 2, gi = 3:

Figure 20: Possible configurations for ni = 2, gi = 3 classical particles. ωi = 9 = 32

For all levels we thus have
∏

i ωi =
∏

i g
ni
i . We also need to take account of how the particles

are distributed between the energy levels. For N classical particles divided in to piles with ni
in the i’th pile, the number of arrangements is

N !

n1!n2! . . .
=

N !∏
i ni!

. (4.31)

Combining all of this together gives

wk = N !
∏
i

gnii
ni!

. (4.32)

Example 4.4. Example with N = 6, U = 6ε, gi = 3,ΩMB = 3.37× 105

5 Thermodynamic Ensembles

Figures to be included.
There are three types of thermodynamic systems, and each corresponds to what is called an
ensemble. The difference comes from which macrostcopic quantities are conserved.

1. Isolated: no exchange of energy or mass with the surroundings. e.g. a closed thermos
flask. Called the microcanonical ensemble: U, V,N all fixed for the total system.

2. Closed: Exchange of energy with the surroundings is possible, but no exchange of mass.
e.g. closed fridge or heating system. Called the canonical ensemble: V,N fixed, bit U
fluctuates.

3. Open: Exchange of energy and mass with the surroundings is possible. e.g. a cell
membrane. Called the grand canonical ensemble V fixed, but N and U fluctuates.
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Figure 21: Possible configurations, and the corresponding thermodynamic probability for N =
6, U = 6ε, gj = 3 classical particles. The statistical weight is ΩFD = 3.37 × 105. n̄j =
Ω−1

∑
k (nj)k wk, is the average occupation number for energy level j.

5.1 Thermal equilibrium and entropy revisited

Consider a closed system consisting of two subsystems in thermal contact with constant total
energy, U = U1 +U2, no exchange of particles. The statistical weight Ω(N,U) of the combined
system is given by

Ω(N, V ) =
∑
U1

Ω1 (N1, U1) Ω2 (N2, U − U1) . (5.1)

The first factor, Ω1 (N1, U1) is the number of microstates in system 1 at energy U1. For a given U
the number of accessible microstates in a macrostate is the product Ω1 (N1, U1) Ω2 (N2, U − U1).
The sum over all possible values of system 1’s energy, U1 ≤ U results in Ω(N, V ).

The largest term in the sum governs the properties of the entire system in thermal equilibrium.
To find this maximum value we need to find the stationary values of Ω subject to infinitesimal
change in the subsystem energies, e.g. dΩ = 0.

As N is fixed the differential of Ω is

dΩ =

(
∂Ω

∂U1

)
N1,U2

dU1 +

(
∂Ω

∂U2

)
N1,U1

dU2 =! 0. (5.2)

In equilibrium the total energy is constant, 0 = dU = dU1 +dU2 which implies that dU1 = −dU2

and

dΩ =

((
∂Ω

∂U1

)
N1,U2

−
(
∂Ω

∂U2

)
N1,U1

)
dU1. (5.3)

Recalling that Ω = Ω1(U1)Ω2(U2) the equilibrium condition becomes

Ω2

(
∂Ω1

∂U1

)
N1,U2

= Ω1

(
∂Ω2

∂U2

)
N1,U1

, (5.4)
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divide both sides by Ω to find

1

Ω1

(
∂Ω1

∂U1

)
N1,U2

=
1

Ω2

(
∂Ω2

∂U2

)
N1,U1

. (5.5)

This can be rewritten as (
∂ log Ω1

∂U1

)
N1,U2

=

(
∂ log Ω2

∂U2

)
N1,U1

(5.6)

which motivates introducing the quantity,

σ(N,U) = log Ω, (5.7)

known as the fundamental entropy.

The previous thermodynamic equilibrium condition was that 1
T1

= 1
T2

, which suggests that

1
Ti

= kB

(
∂σi
∂U1

)
N1,U2

. The constant of proportionality kB is Boltzmann’s constant

kB = 1.38 × 10−23. Often, for example in [KK80], 1
τ

=
(
∂σi
∂U1

)
N1,U2

is called the fundamental

temperature and is related to the measure, or thermodynamic temperature through τ = kBT .
Identifying S = kBσ as the entropy we recover the familiar relation 1

T
=
(
∂S
∂U

)
. This implies

the relationship
S = kB log Ω, (5.8)

in words this says that entropy is the logarithm of the number of microstates accessible to the
system.

An immediate consequence of this is that any increase in the statistical weight Ω will increase
the entropy. Some possibilities for how to do this are given in Figure 22.

Figure 22: Some of the ways that Ω, and hence the entropy, can be increased.

The equilibrium term dominates the sum in Equation (5.1).
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5.2 Boltzmann Factor and the Partition Function

A central object in statistical physics is the partition function, which measures the average
number of accessible states at a given temperature for a system in equilibrium. To understand
the partition function we start by considering a closed total system with energy U0, consisting
of two parts; a reservoir R, and a system S. The system could consist of just one particle, or
of N -particles.

The probability of the system being in a particular state, i, is

p(εi) =
ΩR (U0 − εi)
ΩR+S (U0)

. (5.9)

The ratio of two probabilities, e.g. comparing the probability of the system being in state 1 to
the probability of the system being in state 2, is

p(ε1)

p(ε2)
=

ΩR (U0 − ε1)

ΩR (U0 − ε2)
=
eσR(U0−ε1)

eσR(U0−ε2)
= e∆σR . (5.10)

Here ∆σR is the difference in the fundamental entropy of the reservoir between the system
being in state 1 or state 2. For a suitably large reservoir we can assume that U0 � εi, thus σR
can be Taylor expanded:

σR(U0 − εi) = σR(U0)− εi
(
∂σR
∂U0

)
V,N

+ · · · = σR(U0)− ε

τ
, (5.11)

⇒ ∆σR = −(ε1 − ε2)

τ
= −β (ε1 − ε2) . (5.12)

In the above we have made use of the relationship
(
∂σR
∂U0

)
V,N

= 1
τ
. The ratio of probabilities

can now be expressed as
p(ε1)

p(ε2)
=
e−βε1

e−βε2
, (5.13)

from which we read off that
p(ε1) ∝ e−βε1 = e

− ε1
kBT , (5.14)

with the exponential factor known as the Boltzmann factor. The Boltzmann factor is the
thermodynamic probability of the system being in a state with energy εi, to obtain a true
probability we need to normalise by dividing by the sum over all of these Boltzmann factors.
This sum is known as the partition function Z:

Z =
∑
i

e−βεi =
∑
j

gje
−βεj , (5.15)

where the first sum is over all states i in the system, while the second sum takes account of the
degeneracy of the energy levels and is a sum over the energy levels j.

The probability of finding the system at energy εj is then

p(εj) =
gje
−βεj

Z
=
nj
N
, (5.16)
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with nj the occupation number of energy level j and N the total particle number. Observe
that

∑
j p(εj) = Z

Z
= 1, so it is indeed a probability.

Another useful concept is the thermal average, or ensemble average, of a thermodynamic quan-
tity. This average is denoted

〈X〉 =
∑
j

Xjp(Xj), (5.17)

for a quantity X. It is most common to encounter the thermal average energy11

U = 〈ε〉 =
∑
j

εjp(εj), (5.18)

note that here U is the system energy and not the energy of the systems plus the reservoir.

A major boon of working with the partition function is that many thermodynamic quantities
can be constructed from it by taking derivatives. Consider the thermal average energy U :

U = 〈ε〉

=
1

Z

∑
j

εjgje
−βεj , using the definition of p(εj)

= − 1

Z

dZ

dβ
, using

dZ

dβ
= −

∑
j

gjεje
−βεj

= −d lnZ

dβ
,

giving that

U = −d lnZ

dβ
. (5.19)

On the second problem sheet you showed that

F = −β−1 lnZ. (5.20)

These are just two examples of thermodynamic quantities that can de derived as thermal
averages from the partition function. You will meet others on the problem sheets and in other
courses.

Example 5.1. Ideal monatomic gas
Let us now consider how to actually compute the partition function for a system. Consider
the case of 1 atom of mass m allowed to move freely in a cubic box of volume V = XY Z.
In this case the partition function is known as the translational partition function as we are
considering translational motion of the atom within the box. This enables us to identify the
energy of the atom with the energy levels of a particle in a box. If allowed the atom to vibrate
or rotate then this will change the energy12. The partition function is thus

Z1 =
∑
n

e−βεn , εn = εnx + εny + εnz , (5.21)

11When we consider open systems in the next section we will also encounter the thermal average of the particle
number.

12In a first approximation, allowing vibration will result in a harmonic oscillator like contribution to the
energy. However, this complicates the problem so we will disregard it for now.
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with nx, ny, nz the quantum numbers describing the state of the system, the energy is the sum
of the translational energy in each direction. Expanding this we have that

Z1 =
∑
n

e−β(εnx+εny+εnz) = Z1xZ1yZ1z, (5.22)

where
Z1x =

∑
n

e−βεnx (5.23)

is the one dimensional translation partition function for the x-direction, and Z1y, Z1z are the
same for the y and z directions. Observe that while energies are additive, partition functions
are multiplicative! For a one-dimensional box of length X the quantum mechanical energy
levels are

εnx =
n2
xh

2

8mX2
, (5.24)

which means that Equation (5.23) becomes

Z1x =
∞∑
n=0

e−β
n2xh

2

8mX2 , (5.25)

by convention the zero point energy, ε0 is set to zero so contributes 1 to the sum. Provided
the spacing between the energy levels is small in comparison to kBT we can take a continuum
limit and replace the sum with an integral,

Z1x =

∫ ∞
0

exp

(
−β n2

xh
2

8mX2

)
dnx. (5.26)

This integral can be solved using the substitution

a2 = β
n2
xh

2

8mX2
, ⇒ dnx =

√
8mX2

βh2
da, (5.27)

which turns the integral into a Gaussian integral and gives

Z1x =

√
8mX2

βh2

∫ ∞
0

exp
(
−a2

)
da =

√
8mX2

βh2

√
π

2
=

√
2mπ

βh2
X (5.28)

as the one dimensional translational partition function. An analogous calculation gives the y
and z terms.

Putting everything together we have that

Z1 = Z1xZ1yZ1z =

(
2mπ

βh2

) 3
2

XY Z = nQn, (5.29)

where

n =
1

V
=

1

XY Z
, (5.30)
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is the number density of 1 atom per volume, and

nQ =

(
2mπ

βh2

) 3
2

(5.31)

is the quantum concentration. This is the concentration associated with 1 atom in a cube with
side length equal to the thermal average of the de Broglie wavelength, l = 〈λ〉 = h

m〈v〉 .

The size of n
nQ

is a criteria for whether a gas is in a quantum or classical regime. When n
nQ
� 1

the gas is in the classical regime governed by Boltzmann statistics. An Ideal gas is defined as
a gas of non-interacting particles in the classical regime.

An example of an ideal gas is Helium at room temperature, 296K, and pressure 1atm =
101325Pa. Here we have that13

n = 2.48× 1019cm−3, (5.32)

nQ = 7.71× 1024cm−3. (5.33)

The ratio is n
nQ
' 3.2× 10−6 � 1 so we are in the classical regime and He is an ideal gas. This

means that the number of Helium aoms is much smaller than the number of available quantum
states.

Example 5.2. N-particle partition function
For a gas of N atoms we proceed as in the one-particle case, but now we are splitting the
partition function into the product of the one-particle partition functions for each particle14.
This happens because the N -particle energy of state i splits into the sum of the energies of
each particle in the state

εi = ε
(1)
i + ε

(2)
i + ε

(3)
i + · · ·+ ε

(N)
i , (5.34)

here we are pretending that the particles are distinguishable so that we can label them 1, 2, 3, . . . , N .
If the particles are indistinguishable we need to divide the product of one-particle partition func-
tions by 1

N !
to avoid over counting by treating the different orders as distinct configurations.

The N -particle partition function is thus

ZN =

(∑
i

e−βε
(1)
i

)(∑
i

e−βε
(2)
i

)
· · ·

(∑
i

e−βε
(N)
i

)
= Z

(1)
1 Z

(2)
1 . . . Z

(N)
1 . (5.35)

We thus have that

ZN =

(Z1)N for distingushable particles,

1

N !
(Z1)N for indistingushable particles.

(5.36)

13When giving n = 1
V we are cheating slightly, really we should specify the volume and find N from this.

Instead we are assuming that we have an ideal gas and using the equation p = nkBT to compute the number
density for the given pressure and temperature.

14To do this we require the particles to be non-interacting, or at least so weakly interacting that we can forget
about the interaction.
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5.3 Gibbs Factor and Grand Partition Function

When we discussed the Boltzmann factor we were considering a closed system able to exchange
heat with a large reservoir. What happens for an open system?

Consider again a total system, with energy U0 and N0 particles, consisting of a reservoir R and
a system S. The probability for the particle to be in state i with N particles and energy εi(N)

is
p(N, εi(N)) ∝ ΩR

(
N0 −N,U0 − εi(N)

)
. (5.37)

The notation εi(N) is used to make it clear that we are talking about the energy of state i of
the N particle system. If the particles are non-interacting, then the energy of an N -particle
state is N times the energy of a 1 particle state and we can use the simpler notation εi. We
will tend to use the second notation but it is occasionally convenient to use the first as it clears
up that we are talking about the probability to find the system in a given microstate. Writting
it out in full the probability is proportional to the number of microstates of the total system,
R+ S consistent with S being in state i(N). However, as we are specifying the state of S, we
find that this is ΩR+S = ΩR(N0−N,U0− εi(N))× 1. In other words the total number of states
accessible to the reservoir is the same as the number of states accessible to R + S as we have
specified the state of S.

This implies that the ratio of probabilities is

p(N1, ε1(N1))

p(N2, ε2(N2))
=

ΩR
(
N0 −N1, U0 − εi(N1)

)
ΩR
(
N0 −N1, U0 − ε2(N2)

) = e∆σR , (5.38)

with ∆σR the difference between the fundamental entropies of the two states. The approach
is again to assume that the reservoir is sufficiently large compared to the system that U0 �
ε1(N1), ε2(N2) and N0 � N1, N2. This enables us to Taylor expand the fundamental entropy,

σR
(
N0 −N,U0 − εi(N)

)
' σR (N0, U0)−N

(
∂σR
∂N0

)
U0

− ε
(
∂σR
∂U0

)
N0

. (5.39)

Next recall that15 (
∂σR
∂N0

)
U0

=
1

kB

(
∂SR
∂N0

)
U0

= − µ

kBT
= −µ

τ
, (5.40)(

∂σR
∂U0

)
N0

=
1

kB

(
∂SR
∂U0

)
N0

=
1

kBT
=

1

τ
, (5.41)

so we can write

σR
(
N0 −N,U0 − εi(N)

)
' σR (N0, U0) +

µN

τ
− ε

τ
. (5.42)

Doing this for ∆σR we find

∆σR =
µ (N1 −N2)

τ
− (ε1 − ε2)

τ
, (5.43)

15These relationships are true for the reservoir. However, as R and S are in equilibrium they are at the same
temperature and have the same chemical potential.
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and the ratio of probabilities is thus

p(N1, ε1)

p(N2, ε2)
=

exp ((N1µ− ε1) β)

exp ((N2µ− ε2) β)
. (5.44)

The exponential factor exp
((
Nµ− εi(N)

)
β
)

is known as the Gibbs factor. It is proportional
to the probability that the system S is in state i with N particles and energy εi(N).

Summing over the possible Gibbs factors gives rise to a partition function, called the Grand par-
tition function. This is the normalising factor which turns the Gibbs factors into probabilities,
just like the canonical partition function did for the Boltzmann factors of a closed system.

The grand partition function is

Z(µ, T ) =
∞∑
N=0

∑
i(N)

exp

(
Nµ− εi(N)

kBT

)
. (5.45)

Sometimes the double sum,
∑∞

N=0

∑
i(N) is written as

∑
ANS, where ANS stands for all particles

all states. This just signifies that we first sum over the possible particle numbers for the system,
and then sum over the possible microstates of the system with the given number of particles.

The absolute probability that the system will be found in microstate i with N particles and
energy εi(N) is

p(N, εi(N)) =
exp

(
β
(
Nµ− εi(N)

))
Z

. (5.46)

This is a true probability since

∞∑
N=0

∑
i(N)

p(N, εi(N)) =
Z
Z

= 1. (5.47)

As in the case of the canonical ensemble for open systems there is a thermal (or ensemble)
average. If X(N, i) is the value of a variable X when the system has N particles in microstate
i then its thermal average, over all N and all microstates, is

∑
N

∑
i(N)

X(N, i)p(N, εi(N)) =
∑
N

∑
i(N)

X(N, i) exp
(
β
(
Nµ− εi(N)

))
Z

. (5.48)

For a system in diffusive and thermal equilibrium with the reservoir the particle number fluc-
tuates, with the average particle number being

〈N〉 =
∑
N

∑
i(N)

N exp
(
β
(
Nµ− εi(N)

))
Z

. (5.49)

Taking the β derivative of the grand partition function gives

∂Z
∂µ

= β
∑
N

∑
i(N)

N exp
(
β
(
Nµ− εi(N)

))
, (5.50)
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which combines with Equation (5.49) to give

〈N〉 =
1

βZ
∂Z
∂µ

=
1

β

∂ lnZ
∂µ

. (5.51)

This is another example of the fact that knowing the partition function for an ensemble enables
us to calculate thermodynamic quantities.

A useful related quantity is the fugacity (or activity)

λ = exp (βµ) . (5.52)

Using the fugacity the partition function and the average particle number can be rewritten as

Z =
∞∑
N=0

∑
i(N)

λN exp (−βεi) , (5.53)

〈N〉 = λ
∂ lnZ
∂λ

. (5.54)

The thermal average of the energy is another useful quantity to compute in terms of lnZ,
though it is not given as simply as for the canonical ensemble above. We have that

U = 〈ε〉 =
∑
N

∑
i(N)

εi exp
(
β
(
Nµ− εi(N)

))
Z

, (5.55)

to simplify this note that

〈N〉µ− U = 〈Nµ− ε〉 (5.56)

=
∑
N

∑
i(N)

(Nµ− εi)
exp

(
β
(
Nµ− εi(N)

))
Z

(5.57)

=
1

Z
∂ lnZ
∂β

, To see this just compute
∂ lnZ
∂β

. (5.58)

Upon substituting in Equation (5.49) this results in

U =
µ

β

∂ lnZ
∂µ

− ∂ lnZ
∂β

=

[
µ

β

∂

∂µ
− ∂

∂β

]
lnZ. (5.59)

6 Quantum Gases: Fermi-Dirac and Bose-Fermi distributions

In the grand canonical ensemble we can consider a system which consists solely of one state
(single particle in the case of fermions). The thermal average of the particle number, 〈N〉, is
then interpreted as the occupancy probability (often just called occupancy) of the state.
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6.1 Fermi-Dirac Distribution

In a real system consisting of a large number of fermions it is useful to focus on one state, call
this the system S, and think of all the other states as the reservoir. Our goal is to find the
thermal average occupancy of the singled out state S.

Recall that the Pauli exclusion principle says that “A state can only be occupied by 0 or 1
fermion”. This means that our average occupancy will be between zero and 1.

The model of our system is the following, the state is either empty or contains a single free
fermion. The quantity ε can be either the kinetic energy of the fermion or its spin orientation.
We assume that the fermion is confined to a fixed volume16, and that the fermion gas, e.g the
system plus the reservoir, is either non- or weakly interacting.

System

Figure 23: A model of a real gas of fermions, e.g. electrons in a metal. The system consists of
one single-fermion state

By considering the two possibilities we can compute the grand partition function and hence
the average occupation number.

1. When the state is unoccupied it has zero energy and the reservoir consists of N0 fermions
with energy U0. The fundamental entropy for the total system (system + reservoir) is
thus σ(N0, U0) = ln Ω(N0, U0). This means that the unoccupied system has the Gibbs
factor e0 = 1.

2. If the state is occupied it has one fermion in it with energy ε. The reservoir thus consists
of N0−1 fermions and energy U0−ε. The fundamental entropy is thus σ(N0−1, U0−ε) =
ln Ω(N0 − 1, U0 − ε), Taylor expanding we find that

σ(N0 − 1, U0 − ε) ' σ(N0, U0) + βµ− βε. (6.1)

This results in the Gibbs factor of the occupied state being e(µ−ε)β.

16This is so we can use our understanding of the quantum mechanical particle in the box to compute the
energy of the fermion.
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Computing the grand partition function we thus have that

Z = 1 + e(µ−ε)β = 1 + λe−βε. (6.2)

From the partition function we can compute the thermal average occupation number:

〈N〉 = λ
∂ lnZ
∂λ

(6.3)

= λ
∂

∂λ
ln
(
1 + λe−βε

)
(6.4)

=
λe−βε

λe−βε + 1
(6.5)

=
1

λ−1eβε + 1
. (6.6)

We call the thermal occupancy of a state with energy ε the distribution function:

f(ε) = 〈N(ε)〉 =
1

λ−1eβε + 1
. (6.7)

Substituting in the fugacity we have the conventional expression for the Fermi-Dirac distribution
function,

fFD(ε) =
1

eβ(ε−µ) + 1
. (6.8)

The Fermi-Dirac distribution gives the average number of fermions in a single state of energy
ε. A consequence of the Pauli exclusion principle is that 0 ≤ f(ε) ≤ 1.

In the context of solid state physics it is conventional to refer to the chemical potential of
a gas of fermions as the Fermi level, εF . The Fermi level is usually temperature dependent,
since the chemical potential is. At absolute zero the Fermi-level is called the Fermi-energy,
εF0 = µ(T = 0).

At T = 0 all states below the Fermi energy are occupied by exactly one fermion, all other states
are unoccupied. For T > 0 the value of µ is no longer the Fermi energy. A state at the Fermi
level ε = µ is half-filled (f = 1

2
) in the sense of the Fermi-Dirac distribution.

Need to add figures of f(ε).

In a general Fermi gas we can introduce a reference temperature, known as the Fermi temper-
ature, TF , through εF0 = κBTF . Typically the Fermi temperature is close to 50000K for the
free conduction electrons in a metal. The Fermi temperature is not a “real” temperature, it is
a reference temperature corresponding to the Fermi energy. We then have the criteria

� If TF � T : call the gas degenerate.

� If TF � T : the gas is in the classical regime.

We can also introduce a velocity through εF0 = 1
2
mv2

F0.
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Conduction electron concentration (N
V

) Fermi velocity Fermi energy Fermi Temperature
Li 4.6× 1022cm−3 1.3× 108cms−1 4.7eV 5.5× 104K
Na 2.5× 1022cm−3 1.1× 108cms−1 3.1eV 3.7× 104K
K 1.34× 1022cm−3 0.85× 108cms−1 2.1eV 2.4× 104K
Rb 1.08× 1022cm−3 0.79× 108cms−1 1.8eV 2.1× 104K
Cs 0.86× 1022cm−3 0.73× 108cms−1 1.5eV 1.8× 104K
Cu 8.5× 1022cm−3 1.56× 108cms−1 7.0eV 8.2× 104K
Ag 5.76× 1022cm−3 1.38× 108cms−1 5.5eV 6.4× 104K
Au 5.90× 1022cm−3 1.39× 108cms−1 5.5eV 6.4× 104K

Table 4: Examples of the Fermi quantities for a variety of metals. Taken from [KK80]. The
units of εF0 are electron volts, related to an energy in joules through, 1eV = 1.6× 10−19.

6.2 Bose-Einstein Distribution

Now we turn our attention to Bosons and consider the distribution function for a system of
non-interacting, identical, bosons in thermal and diffusive contact with the reservoir. We follow
the same approach as in the Fermi-Dirac case and single out a specific state of the Bose-gas to
be treated as our system.

Let the energy of a single state be ε. If occupied by N particles the energy of the system is
Nε. The grand partition function is then

Z =
∞∑
N=0

λNe−βNε =
∞∑
N=0

(
λe−βε

)N
, (6.9)

letting x = λe−βε < 1 this becomes a convergent geometric series with

Z =
∞∑
N=0

xN =
1

1− x
=

1

1− λe−βε
. (6.10)

The thermal average occupancy of the state is then

f(ε) = 〈N〉 = λ
∂ lnZ
∂λ

= −xd lnZ
dx

=
x

1− x
=

1

λ−1eβε − 1
, (6.11)

this leads to the Bose-Einstein distribution

fBE(ε) =
1

eβ(ε−µ) − 1
. (6.12)

This gives the thermal average of the number of bosons in a single state of energy ε.

6.3 Maxwell-Boltzmann Distribution and the Classical Limit

We can compare the two distributions, Equations (6.8) and (6.12), in the limit that the expo-
nential factor is large, eβ(ε−µ) � 1. In this limit the plus or minus one in the denominator is
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Figure 24: A model of a Bose-gas. On the left is T = 0 and on the right is T > 0.
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Figure 25: A comparison of the three distribution functions;fBE(ε) in red, fFD(ε) in orange,
and fMB(ε) in blue. For large values of β (ε− µ) the three distributions agree.

negligible and f(ε) � 1, another way to say this is that there are more states available than
particles to fill them. This means that for both Fermions and Bosons the limit of the thermal
average occupancy of a state with energy ε is given by the Maxwell-Boltzmann distribution.
The three distributions are compared in Figure 25.

The large β (ε− µ) limit results in the classical Maxwell-Boltzmann distribution

fMB(ε) = λe−βε. (6.13)

This is the classical distribution function giving the average occupancy of one state with energy
ε.

All particles are either fermions or bosons, they behave fundamentally differently in the quan-
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tum regime but alike in the classical regime. In the classical regime the concentration, n,
is small in comparison to the quantum concentration, nq. Thus the classical regime is when

n� nq =
(

2πm
βh2

) 3
2
.

Regime Type of particle f(ε)

Classical
Boson � 1

Fermion � 1

Quantum
Boson State of lowest energy has f(ε)� 1

Fermion close to but less than 1

Table 5: A table comparing the distribution function for bosons and fermions in the the classical
and quantum regimes.

We can now consider the classical limit. Generally we have that

N = 〈N〉 =
∑
i

f(εi), (6.14)

for an identical monatomic gas in the classical regime this is given by

N = λ
∑
i

e−βεi = λZ1 = λnQV. (6.15)

This implies that the fugacity is given by

Eβµ = λ =
N

nqV
=

n

nQ
. (6.16)

Hence the chemical potential can be expressed as

µ =
1

β
ln

(
n

nQ

)
=

1

µ

[
lnN − lnV +

3

2
ln β + ln

(
h2

2πm

)]
. (6.17)

Now from µ the thermodynamic quantities F,U , and S can be calculated. We can also derive the
ideal gas law and expressions for the heat capacities. The free energy follows from integrating

µ =

(
∂F

∂N

)
T,V

, (6.18)

and S, P follow from derivatives of F . By considering U = F − TS we then find that

U =
3

2
NkBT. (6.19)

The energy, ε, is always defined within a constant , i.e. the zero of the energy is arbitrary,
though there is often a natural choice. This choice will affect the value of the chemical potential,
however, ε− µ is independent of the choice of zero for ε.
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6.4 Fermi Gases, Density of states, and the Heat Capacity of an Electron Gas

Turning our attention back to the Fermi gas, recall that the quantum concentration is given by

nQ =
(

2πm
βh2

) 3
2
, this can be rearranged to give a temperature,

T0 = n
2
3
Q

2π~2

mkB
(6.20)

with ~ = h
2π

the reduced version of Planck’s constant. A Fermi gas in the quantum regime is
called degenerate when the temperature is much lower than T0, T � T0.

The free electron model of metals is the prototypical example of a Fermi gas. Studying the
electron states of this Fermi gas gives insights into the electrical and magnetic properties of
conductors, as well as the electron contribution to the heat capacity.

The assumptions in the free electron model are:

1. Valence electrons are fully detached from the ionic rest atoms.

2. The wave function of an electron extends over many atoms.

3. The electrons do not interact with each other or with the ions.

4. There are infinite potential energy barriers at the surfaces of the conductor.

Armed with these assumptions we can model an electron as a quantum mechanical particle in
a box. For an electron in a cubic box with side length L, volume V = L3, the wave function
and energy levels are given by Equations (4.6) and (4.7):

ψnx,ny ,nz(x, y, z) = c sin
(nxπx

L

)
sin
(nyπy

L

)
sin
(nzπz

L

)
,

εnx,ny ,nz =

(
n2
x + n2

y + n2
z

)
π2~2

2mL2
,

with the quantum numbers nx, ny, nz being positive integers (1, 2, 3, . . . ). Sometimes the energy

will be written in terms of a wavevector ~k = π
L

(nx, ny, nz).

The density of states,

D(ε) =
dn

dε
, (6.21)

is the number of states, dn, in the energy (ε, ε + dε). To understand17 it consider a three
dimensional space with coordinates (nx, ny, nz). A surface of constant energy εr (the largest
energy level) is given by the sphere of radius n2

r = n2
x+n2

y+n2
z. We are interested in the density

of states within the positive octant, as the quantum numbers are all positive nx, ny, nz > 0.
The total ball has a volume of V = 4

3
πn3

r, so the positive octant has a volume of

VOct =
1

8
VB =

1

8

4

3
πn3

r =
π

6
n3
r. (6.22)

17For discrete quantities the density will be the number of states divided by the volume the states fill in state
space, e.g. the space of allowed quantum numbers.
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Since electrons have spin 1
2

there are two electron states for every point (nx, ny, nz), these
correspond to the electron being spin up or spin down, ms = ±1

2
. Thinking of the quantum

numbers as being continuous, the number of electron states in the positive octant is

n = 2× VOct =
π

3
n3
r, (6.23)

which we can solve for the radius of the sphere as nr =
(

3n
π

) 1
3 . Note that here n is the number

of states within the ball not the number density as it was in the last section. We can thus
express the energy at the surface of the sphere as a function of the number of states as

ε =
n2
rπ

2~2

2mL2
=

(
3n
π

) 2
3 π2~2

2mL2
, (6.24)

expanding an rearranging gives the number of states within the ball of energy ε is

n(ε) =
(2m)

3
2 V ε

3
2

3π2~3
. (6.25)

Differentiating this gives the density of state,

D(ε) =
dn

dε
=

(2m)
3
2 V

2π2~3
ε

1
2 . (6.26)

The density of states depends on the dimension, on the problem sheets you will compute the
two-dimensional density of states.

Recall that the probability that a specific state with energy ε is occupied at temperature T is
f(ε, T, µ). To find the number of electrons, dN , in the energy range (ε, ε+ dε) this probability
needs to be multiplied by the density of states,

dN = f(ε)D(ε)dε. (6.27)

Upon integration over the energy we find the total number of electrons in the electron gas:

N =

∫ ∞
0

f(ε)D(ε)dε. (6.28)

The internal energy (total kinetic energy) of the electron gas follows from dU = εdN :

U =

∫ ∞
0

εf(ε)D(ε)dε. (6.29)

At absolute zero, T = 0, these expressions simplify as the Fermi-Dirac distribution is a step
function

f(ε) =

{
1 ε < εF0

0 ε > εF0.
(6.30)
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The particle number from Equation (6.28) can now be evaluated as

N =

∫ εF0

0

1D(ε)dε+

∫ ∞
εF0

(0)D(ε)dε (6.31)

=

∫ εF0

0

D(ε)dε (6.32)

=
(2m)

3
2 V ε

3
2
F0

3π2~3
. (6.33)

Rearranging this we find that the Fermi energy of the electron gas is

εF0 =
3

2
3π

4
3~2

2m

(
N

V

) 2
3

, (6.34)

here N
V

is the number density of electrons in the gas, also known as the conduction electron
concentration. This calculation shows how the Fermi-energy is computed in three dimensions,
to find it for an electron gas in any other direction the same sort of calculation is done using
the appropriate density of states.

The total ground state energy is then given by

U0 =

∫ εF0

0

εD(ε)dε. (6.35)

Using the expression for the total particle number the density of states can be expressed as

D(ε) =
3

2

N

ε
3
2
F0

ε
1
2 . (6.36)

Making use of this new expression the integral for U can be carried out to find

U0 =
3N

2ε
3
2
F0

∫ εF0

0

ε
3
2dε =

3

5
NεF0, (6.37)

so the average energy per electron, U
N

, at T = 0 is 3
5
εF0.

Turning our attention to systems at non zero temperature, it is natural to ask what the increase
in energy is when a system of N electrons is heated from 0K to a temperature T:

∆U = U(T )− U0 =

∫ ∞
0

εf(ε)D(ε)dε−
∫ εF0

0

εD(ε)dε. (6.38)

The total particle number of the electron gas is not changing as we heat the gas so we can still
write

N =

∫ εF0

0

D(ε)dε =

∫ ∞
0

f(ε)D(ε)dε, (6.39)

multiplying by the Fermi-energy we have that∫ εF0

0

εF0D(ε)dε =

∫ εF0

0

εF0f(ε)D(ε)dε,+

∫ ∞
εF0

εF0f(ε)D(ε)dε. (6.40)
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The identity in Equation (6.40) can be used to add zero to ∆U and express it as

∆U =

∫ ∞
εF0

(ε− εF0) f(ε)D(ε)dε +

∫ εF0

0

(εF0 − ε) [1− f(ε)]D(ε)dε, (6.41)

the two terms in this expression can be understood as follows:

1. The first term is the energy needed to take an electron with energy εF0 and raise it to a
state with energy above the Fermi energy ε > εF0.

2. The second terms is the energy needed to bring an electron from a state below the Fermi
energy to a state at the Fermi energy.

In other words it describes how the energy of electrons are increased during the heating.

At constant volume when heat is added to a system the specific heat capacity is defined as

CV =

(
dQ

dT

)
V

=

(
dU

dT

)
V

. (6.42)

To compute the heat capacity we need to differentiate ∆U with respect to temperature. To
facilitate this expand ∆U to

∆U =

∫ ∞
εF0

(ε− εF0) f(ε)D(ε)dε+

∫ εF0

0

(εF0 − ε)D(ε)dε

+

∫ εF0

0

(ε− εF0) f(ε)D(ε)dε.

(6.43)

All of the temperature dependence is in the Fermi-Dirac distribution, so the second term does
not contribute to the derivative. We thus have that

dU

dT
=

∫ ∞
εF0

(ε− εF0)
df(ε)

dT
D(ε)dε+

∫ εF0

0

(ε− εF0)
df(ε)

dT
D(ε)dε (6.44)

=

∫ ∞
0

(ε− εF0)
df(ε)

dT
D(ε)dε. (6.45)

The heat capacity is

CV =

∫ ∞
0

(ε− εF0)
df(ε)

dT
D(ε)dε. (6.46)

This expression is not explicit, to improve it we need to evaluate df(ε)
dT

. Fortunately, for T � TF

we can use that df(ε)
dT

is only significant near the Fermi energy, ε ' εF0, we can read this off

the plots, df(ε)
dT

is sharply peaked around the Fermi level and becomes a delta function in the
T → 0 limit. In other words when T � TF we can ignore the temperature dependence of µ,
in [Man71] an approximate expression for µ as a function of T is found and it is εF0 with a

correction term depending on
(
T
TF

)2

. We can thus replace D(ε) by D(εF0), giving the electron

heat capacity as

Cel ' D(εF0)

∫ ∞
0

(ε− εF0)
df(ε)

dT
dε. (6.47)
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to make further progress we need to compute df(ε)
dT

for εF ' εF0:

df(ε)

dT
=

d

dT

 1

exp
(
ε−εF0

kBT

)
+ 1

 (6.48)

= − 1(
exp

(
ε−εF0

kBT

)
+ 1
)2 exp

(
ε− εF0

kBT

)(
−(ε− εF0)

kBT 2

)
. (6.49)

Next let x(ε) = ε−εF0

kBT
so that x(0) = − εF0

kBT
and dx = dε

kBT
so that x2 = (ε−εF0)2

kBkBT 2 and the electron
heat capacity becomes

Cel ' k2
BTD(εF0)

∫ ∞
− εF0
kBT

x2ex

(ex + 1)2dx. (6.50)

The lower limit can be replaced by −∞ as ex is already negligible for εF0

kBT
∼ 100, e.g. at low

temperatures.

The integral is then evaluated as ∫ ∞
−∞

x2ex

(ex + 1)2dx =
π2

3
, (6.51)

giving

Cel ' k2
BTD(εF0)

π2

3
=

1

3
π2k2

BTD(εF0). (6.52)

Substituting in the density of states, D(εF0) = 3
2
N

ε
3
2
F0

ε
1
2
F0 = 3N

2kBTF
, to get

Cel '
π2

2
NkB

T

TF
when T � TF . (6.53)

The electron contribution to the heat capacity is thus linear in temperature. Recall that the
Fermi-temperature is not a real temperature, rather it is a reference point. As TF is typically
around 50000K in ordinary metals the condition that T � TF is satisfied in ordinary metals
near room temperature.

The overall heat capacity of metals is given by the sum of the electron contribution (Cel) and
the lattice vibration (phonon) contribution18

CV = Cel + Cph. (6.54)

At low temperatures (T � Θ the Debye temperature) this is

CV = γT + AT 3, (6.55)

18We may return to this result later.
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with

γ =
π2

2

NkB
TF

, (6.56)

A =
12π4

5

NatkB
Θ3

, (6.57)

Θ =

(
~csound

kB

)(
6π2Nat

V

) 1
3

, (6.58)

with Nat the number of atoms. Equation (6.56) is known as the Sommerfeld coefficient and has
units of JK−2.

The cubic dependence of CV on T is called the Debye T 3-law for the Heat capacity of solids.
We may return to discuss this in more detail later in in the module.

The model for the specific heat capacity of metals depends on both forms of quantum statistics:

� The Debye model treats the vibrations of the atomic lattice as phonons in a box, these
obey Bose-Einstein statistics

� The heat capacity of conduction electrons is based on Fermi-Dirac statistics.

The electron contribution to the heat capacity is only significant at very low temperatures and
dominates in the T → 0K limit. e.g. in monovalent metals γ

A
' 0.02 θ3

TF
is of order 1.

For example: Li γ
A

= 14.8K2, Na γ
A

= 2.1K2, K γ
A

= 0.6K2, Rb γ
A

= 0.2K2, Cs γ
A

= 0.06K2,
Cu γ

A
= 9.8K2, Ag γ

A
= 3.6K2, and Au γ

A
= 1.4K2.

Finally we give an example of how to compute the pressure for a Fermi gas at absolute zero.

Example 6.1. Pressure in a Fermi gas at T = 0
Consider the Helmholtz free energy of a Fermi gas at absolute zero,

F (T = 0) = (E − TS)T=0 = E0, (6.59)

where by the third law S = 0 at T = 0, and E0 is the energy of the Fermi gas at absolute zero.

Because of the Pauli exclusion principle the states are all filled upto the Fermi energy, εF0. We
computed previously that the energy at T = 0 is given by

E0 =
3

5
NεF0, (6.60)

the free energy is thus given by the same expression

F (T = 0) =
3

5
NεF0 =

3

10
N
~2 (3π2)

1
3

m

(
N

V

) 2
3

, (6.61)

where we have made use of the Fermi energy from Equation (6.34). The pressure is then found
from the thermodynamic relation

p = −
(
∂F

∂V

)
T

. (6.62)
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Computing this derivative gives

p(T = 0) =
1

5

~2 (3π2)
1
3

m

(
N

V

) 5
3

. (6.63)

There is thus a finite, non zero pressure in a Fermi gas even at T = 0. This pressure depends
on the number density of the gas, N

V
, and is often called the fermion degeneracy pressure.

The non zero temperature version of this pressure is responsible for supporting both white
dwarfs (electron degeneracy pressure) and neutron stars (neutron degeneracy pressure) against
gravitational collapse.

6.5 The Bose Gas and Bose-Einstein Condensation

For the Bose gas the distribution function is

fBE(ε, T ) =
1

e
ε−µ
kBT − 1

. (6.64)

For the lowest energy state ε = 0 this becomes fBE(0, T ) = 1

e
−µ
kBT −1

. In the low temperature

(T → 0) limit all the particles are in the ground state. The low temperature limit of the
distribution function is then

N = lim
T→0

fBE(0, T ) = lim
T→0

1

e
−µ
kBT − 1

' 1

1− µ
kBT
− 1
' −kBT

µ
. (6.65)

So as the temperature goes to zero the chemical potential is given in terms of the number of
particles as

N = −kBT
µ

, and µ = −kBT
N

. (6.66)

The fugacity is also related to the particle number,

lim
T→0

λ = lim
T→0

e
µ

kBT ' 1− 1

N
. (6.67)

Generally the chemical potential can be thought of as saying how accepting the system is of
new particles, e.g. how much work needs to be done to add a new particle to the system.

� For bosons µ ≤ 0.

� For fermions µ > 0.

We will see later that for both photons and phonons the chemical potential is zero.

For example in Helium 4 with N = 1022 at T = 1K the chemical potential is µ ' −1.4×10−45J .

Consider the energy levels of a particle in a box, Figure 12, the gap between the first excited
state and the lowest energy state is

∆ε =
3π2~2

2mL2
. (6.68)
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Focusing on Helium 4, with the mass of an atom being m = 6.6 × 10−27Kg, in a cube of side
length L = 1cm we have that ∆ε = 2.5× 10−37 and

∆ε

kB
= 1.8× 10−14K. (6.69)

The expected occupation number of the first excited state at T = 10−3K is given by the
Boltzmann factor, e−∆εβ = exp−1.8× 10−11 ' 1−1.8×10−11 ' 1, even when the concentration
is of the order of the quantum concentration, n ' nQ.

However, the Bose-Einstein distribution gives a very different value for the occupancy of ε2,1,1

at T = 10−3K:

µ = −kBT
N

= −10−3kB
1022

= −1.4× 10−48J, (6.70)

for N the total number of particles in the system. Thus µ� ∆ε and the distribution function
is

fBE(∆ε, T ) =

(
exp

(
∆ε− µ
kBT

)
− 1

)−1

'
(

exp

(
∆ε

kBT

)
− 1

)−1

= 5× 1010, (6.71)

so f
N
' 5×10−12 � 1. Thus only a tiny fraction of the particles are in the first excited state. The

occupancy of the first excited state is thus much lower than we would expect by just looking at
the Boltzmann factor. At sufficiently low temperatures the Bose-Einstein distribution function
favours a situation where the majority of particles are in the ground state. The particles in the
ground state, as long as there number N0 � 1, are called a Bose-Einstein condensate19.

At low temperatures the chemical potential is much closer to the ground state energy, ε1,1,1

conventionally set to zero, than to the energy of the first excited state, ε2,1,1. This “closeness”
of µ to ε1,1,1 means that most of the population of the system is in the ground state.

The density of states for a gas of massive20 bosons is

D(ε) =
(2m)

3
2 V

4π2~3
ε

1
2 . (6.72)

The total particle number is given by

N =
∑
n

fn = N0(T ) + ne(T ) = N0(T ) +

∫ ∞
0

D(ε)f(ε, T )dε, (6.73)

here the sum over the distribution function has been split in to two pieces, the ground state pop-
ulation, and the sum over all of the excited states. The integral only gives the total occupation
of the excited states since the density of states vanishes for ε = 0, D(0) = 0.

Some examples of the Bose-Einstein distribution function for large particle number21 at low
temperatures are given in Figure 26

19As they are all in the same state we have a “macroscopic” number of particles governed by a single quantum
wavefunction.

20For massless bosons like photons and phonons the density of states is slightly different, we will encounter
that soon.

21large N so that λ ' 1 and µ ' 0.
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Figure 26: Plots of the Bose-Einstein distribution at three different temperatures; blue kBT =
0.1J , orange kBT = 0.5J , and green kBT = 1J .

Sometimes we refer to N0(T ) as the condensate occupancy and Ne(T ) as the “normal phase”
occupancy. This is because the Bose-Einstein condensate is in a superfluid phase. For low
temperatures and large particle number we can express the occupancies as

N0(T ) =
1

λ−1 − 1
=
(
e
−µ
kBT − 1

)−1

, (6.74)

Ne(T ) =

∫ ∞
0

D(ε)f(ε, T )dε =
V

4π2

(
2m

~

) 3
2
∫ ∞

0

ε
1
2

λ−1e
ε

kBT − 1
dε. (6.75)

As λ ' 1 the integral in the normal phase occupancy can be evaluated using the substitution
kBTx = ε, ∫ ∞

0

ε
1
2

λ−1e
ε

kBT − 1
dε = (kBT )

3
2

∫ ∞
0

x
1
2

ex − 1
dx = 1.306π

1
2 (kBT )

3
2 . (6.76)

Substituting Equation (6.76) into Equation (6.75), and recalling the formula for the quantum
concentration, nQ, we find

Ne(T ) = 2.612V nQ. (6.77)

Thus as a fraction of the total particle number the occupation of the normal phase is

Ne

N
= 2.612

nQV

N
= 2.612

nQ
n
. (6.78)

For a system with a “large enough” N0 to have a condensate the Einstein condensation tem-
perature, Te is defined as

Te =
2π~2

mkB

(
N

2.612V

) 2
3

, (6.79)

so that
Ne

N
'
(
T

Te

) 3
2

, (6.80)

and the occupation of the excited states varies as T
3
2 for T < Te. For Helium 4 the value of Te

is 3.1K. At the Einstein condensation temperature all the particles are in the normal phase,

Ne(Te) = N. (6.81)
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Thus the condensate only exists for temperatures below Te. For T < Te, but close to Te, a
large number of particles are in the ground state, the Bose gas is said to be in the condensed
(or superfluid) phase.

Include some more plots.

6.6 Phonons and the Debye Law.

This section will include a derivation of the Debye law for the phonon contribution to the heat
capacity of solids. See Chapter 4, page 104 of [KK80] for more details. The key idea is to treat
the lattice atoms as coupled oscillators.

6.6.1 The Planck Distribution

The spectrum of lattice vibrations and the spectrum of black body radiation are described by
the Planck distribution. In both cases the associated quantum particles are massless bosons,
phonons and photons respectively.

For atoms in a lattice (e.g the atoms making up a metal) model the vibrational degrees of
freedom using harmonic oscillators22. A vibration of frequency ωn corresponds to a state with
energy εn = ~ωn, where again the zero point energy has been set to zero. We call these
vibrations modes, they are n quanta23 states with energy εn = n~ω.

The partition function in the grand canonical ensemble is

Z =

nD∑
n=0

e−n~ωβ, (6.82)

there is no explicit sum over states since each particle is in a state with energy ~ω. The limit nD
accounts for the fact that there is a maximum frequency of vibration, e.g. a maximum number
of phonons. As for the Bose-Einstein distribution, let x = e−~ωβ < 1 so that the partition
function is a convergent geometric series,

Z =

nD∑
n=0

xn =
1

1− x
=

1

1− e~ωβ
. (6.83)

The probability that the system is in a state with n quanta is thus

p(n) =
e−n~ωβ

Z
, (6.84)

and the thermal average of the number of phonons is

〈n〉 =

nD∑
0

np(n) =

nD∑
0

n
e−n~ωβ

Z
. (6.85)

22It is natural to ask how valid modelling vibrating atoms as linear oscillators is. This is a good question to
think about and depends on the material. In practice the linear approximation is enough.

23We use quanta rather than particle to avoid confusing the phonons with the atoms in the lattice. The
lattices is vibrating, and these vibrations have frequencies which are integer multiples of a given frequency
ω found by solving a quantum mechanical problem. The vibration with frequency ω is our quanta, called a
phonon, or phonon mode, in a lattice.
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We can evaluate this in terms of the y derivative of lnZ with y = ~ωβ:

〈n〉 =
d

dy
lnZ =

d

dy
ln

(
1

1− e−y

)
=

1

e~ωβ − 1
. (6.86)

This is known as the Planck distribution and agrees with the Bose-Einstein distribution when
the chemical potential is zero, f(ε = ~ω, µ = 0).

The frequency of the mode is found by solving a particle in a box problem, ωn = ncsound
π
L

.
As the lattice is three dimensional n2 = n2

x + n2
y + n2

z is given in terms of the three quantum
numbers. Each atom has three modes associated with it, one for each direction that it can
vibrate in.

Studying phonons leads to the Debye T 3- law that we encountered earlier when discussing the
heat capacity of metals.

The thermal average of the energy for a gas of phonons is

U = 〈ε〉 =

nD∑
n

εn
1

e~ωnβ − 1
=

nD∑
n

~ωn
e~ωnβ − 1

. (6.87)

To evaluate this wee either need to find the phonon density of states24 or by reasoning half-way
to the density of states and then evaluating the integral. We will take the short cut first and
return to give the density of states at the end.

In state space (the three dimensional space with coordinates nx, ny, nz) the accessible states
lie in a positive octant with radius nD, the maximum quantum number. The volume of the
positive octant is

Voct =
1

6
πn3

D, (6.88)

there are three states per point for a total of 1
2
πn3

D states in the positive octant. The volume
element is found by differentiating the expression for the volume, dV = 1

2
πn2dn. Thus the

continuum limit is
nD∑
n=0

(· · · )→ 3

∫ nD

0

dV (· · · ) =
3π

2

∫ nD

0

n2dn (· · · ) . (6.89)

The total energy becomes

U =

nD∑
n

~ωn
e~ωnβ − 1

=
3π

2

∫ nD

0

n2dn
n~ω

en~ωβ − 1
(6.90)

=
3π

2

1

~3ω3β4

∫ yD

0

y3

ey − 1
dy, where y = n~ωβ. (6.91)

The upper limit of the integral is

yD = ~ωβnD = ~β
(

6Nπ2c3
sound

V

) 1
3

= kBΘβ, (6.92)

24This is slightly trickier than finding the density of states for massive particles, as the expression for the
energy of the system, ε = n~ω, is linear for phonons.
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where we have used that ω = πcsound
L

and Θ is the Debye temperature. For T � Θ the upper
limit yD becomes very large and we take the upper limit of the integral to be ∞. The energy
then becomes

U =
3π~ω

2

1

(~ωβ)4

∫ ∞
0

y3

ey − 1
dy =

3π~ω
2

1

(~ωβ)4

π4

15
, (6.93)

where we make use of the standard integral∫ ∞
0

y3

ey − 1
dy =

π4

15
. (6.94)

Making use of the Debye temperature and the expression for ω in terms of the speed of sound
gives

U =
3

5
π4 N

(kBΘ)3 β4
for T � Θ. (6.95)

The heat capacity is given by the temperature derivative of the internal energy

CV =
dU

dT
=

12

5
π4NkB

(
T

Θ

)3

, (6.96)

this is the Debye T 3-law that we encountered earlier.

We close this section by discussing the phonon density of states. For massive bosons and
fermions the energy of a particle in the box is given by

ε =
π2~2n2

2mL2
. (6.97)

However, for photons and phonons the energy is linear

ε = ~ω, (6.98)

for a single mode. To find the density of states it is easiest to work with the wave vector k = π
L
n

which is related to the angular frequency through ω = kcsound. The density of states is defined
such that integrating D(ε)dε gives the total number of states, thus

D(ε)dε = D(k)dk = 3dV =
3

2
πn2dn =

3

2
πk2dk

(
L

π

)3

=
3V

2π2
k2dk =

3V

2π2

ε2

(~csound)3dε. (6.99)

For phonons and photons, sometimes the density of states in written in terms of the frequency
as

D(ω) =
3V

2π2

ω2

c3
sound

dω. (6.100)

Explaining this a bit more, previously we thought of the density of states as the number of
states, dn, within the energy range, (ε, ε + dε). An equivalent way to think about this is to
label the states within a range of wave numbers, (k, k + dk). However, the density of wave
numbers follows from the volume of the positive octant divide by the conversion factor between
wave numbers and states.
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6.7 *Quasi-particles and Superfluidity in Helium Four.

Superfluidity and the excitations that occur within the superfluid phase are discussed in [LLP80]
and [Fey98]. However, these books make use of more advanced methods than we have in
the course. The study of superfluidity is intrinsically quantum mechanical, in fact as you are
quantising a classical field theory it is within the remit of quantum field theory. This intersection
of statistical physics and quantum field theory is called statistical field theory.

The condensation temperature for Helium four of Te = 3K found above is suggestively close
to the superfluid transition temperature of 2.17K. The superfluid phase is related to the
phenomena of Bose-Einstein condensation. 4He becomes as liquid at 4.2K, inter-atomic forces
are relevant in a liquid so it is not modelled by a Bose gas. However, the inter-atomic forces
responsible for the liquification are evidently not strong enough to stop condensation, just delay
it to the lower temperature of 2.17K. In other words for temperatures below 2.17K 4He behaves
like a gas of bosons.

There is also a superfluid phase in 3He. However, this is a more subtle phenomena as 3He
atoms are fermions. They need to form Cooper pairs25, bound states of two 3He atoms. These
Cooper pairs are bosonic and undergo condensation.

The superfluid phase behaves as if it is in a vacuum. This means that the N0
4Hein the

condensate only have energy when the centre of mass of the superfluid is moving (e.g. when
the superfluid is flowing) relative to the lab frame. The condensate flows with zero viscosity, so
as long as the flow does not create excitations26 Another way to give the system energy is if an
object moves through the superfluid. There is an energy criteria, known as the Landau criteria,
giving the minimum velocity at which the object needs to be moving through the superfluid to
generate an excitation.

Include a figure here.

Consider an object of mass M moving through the superfluid. If the object is moving fact
enough to generate an excitation, phonon, of energy εk and momentum ~k then teh conservation
laws for energy and momentum state:

1

2
Mv2 =

1

2
Mv2

f + εk (6.101)

Mv = Mvf + ~k, (6.102)

where v is the initial velocity of the object and vf is the object after the phonon mode has been
excited. These conservation laws can only be satisfied for a velocity larger than the critical
velocity, vc, corresponding to the lowest energy phonon mode. To find the critical velocity use
Equation (6.102) to eliminate vf from Equation (6.101):

M2v2 = M2v2
f + ~2k2, (6.103)

⇒ 1

2
Mv2

f =
1

2
Mv2 +

~2k2

2M
− v~k, (6.104)

⇒ εk = ~vk − ~2k2

2M
. (6.105)

25The same phenomena occurs for electrons in a superconductor, electron-phonon interactions cause the
electrons to pair up and form a bosonic state whoch can pass through the superconductor without any resistance.

26That is the system does not gain enough kinetic energy to excite vibrations, phonons, in the superfluid.
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The critical velocity is thus

vc = minimum

(
εk + ~2k2

2M

~k

)
, (6.106)

which for a very massive object (M →∞ compared to the ~2k2) becomes

vc = minimum
( εk
~k

)
. (6.107)

If v < vc then no excitations are excited. For phonon modes the energy is related to the speed
of sound through εk = ~csoundk and vc = csound. In 4He the critical velocity is vc ' 5× cms−1.

Phonons are not the only excitations possible in superfluid 4He, at higher momenta, values of
k, there are quadratic excitations known as rotons. These can be thought of as the quanta of
vorticity and are related to vortices that occur in superfluids. While very interesting objects,
the study of rotons is unfortunately left for a future course.

7 Transport in Classical Gases

We now turn our attention back to classical gases. In this section we consider the velocity
distribution of particles in a gas, and study transport properties in the gas, e.g. diffusion of
particles, heat flow.

7.1 Kinetic Theory of an Ideal Gas

Before discussing the Maxwell distribution of velocities we first give a derivation of the ideal
gas law by considering a classical gas of molecules in a container.

Include a figure here!

Consider the molecules striking a unit area of the container wall and reflected specularly27. The
velocity perpendicular to the wall is vz and the mass of the molecules in M . The change in
momentum is thus

∆p = −2M |vz| = Impulse imparted on the wall. (7.1)

The pressure on the wall is then the impulse imparted from all the molecules striking a unit
area in unit time. To understand this a bit better define

a(vz)dvz

to be the number of molecules per unit volume with perpendicular velocity in the range (vz, vz+
dvz). Integrating this gives the number density28,∫

a(vz)dvz =
N

V
= n. (7.2)

27That is mirror like reflection where the angle of incidence equals the angle of reflection. Only the z-
component of velocity changes, vz → −vz.

28This is because we are “summing” up the number of particles per unit volume with every possible velocity,
giving the total number of particles per unit volume.
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To find the number of particles that strike a unit area per unit time we need to modify this.
Infinitesimally the volume is dxdydz and the infinitesimal surface area of the container is dxdy.
Thus we arrive at

a(vz)vzdvz,

with vz = dz
dt

, as the number of particles that strike a unit area per unit time. The momentum
change due to these molecules is29

∆p = −2Mv2
za(vz)dvz. (7.3)

This implies that the pressure is

P =

∫ ∞
0

2Mv2
za(vz)dvz = M

∫ ∞
−∞

v2
za(vz)dvz, (7.4)

where the final integral is the thermal average of v2
z times the number density n. Why v2

zn?
This is because a(vz)dvz is the number of molecules per unit volume with vz ∈ (vz, vz + dvz).
The per unit volume in the thermal average is due to this. We thus have that

P = M〈v2
z〉n. (7.5)

We can now invoke the equipartition of energy, that in thermal equilibrium the energy is shared
equally between all its forms30. For us this just means that the thermal energy is related to
the thermal average of the kinetic energy,

1

2
kBT =

1

2
M〈v2

z〉. (7.6)

Thus

P = nkBT =
NkBT

V
, (7.7)

the familiar ideal gas law.

As discussed in [KK80] the specular reflection assumption can be relaxed. What is important
is that the distribution of velocities is the same before and after reflection.

Now we turn our attention to a derivation of the Maxwell distribution of velocities. Recall that
the distribution function for an ideal gas is

f(ε) = λe−βε, (7.8)

the Maxwell-Boltzmann distribution function. Remember that here f(ε) = 〈N(ε)〉 is the
probability that the state with energy ε in a cube of volume V = L3 is occupied.

To turn this in to a distribution of velocities proceed as when the density of states was intro-
duced. The average number of particles with state label (read quantum numbers) in the range
(n, n+dn) is (Number of states in the range(n,n+dn) )×(Probability that a state is occupied).

29Here we are taking vz to be the speed in the z-direction which is the modulus of the velocity and thus
positive.

30More explicitly it states that each degree of freedom has thermal average energy 1
2kBT .
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For a gas of spin zero particles the number of states in the range is given by the volume of the
positive octant of the spherical shell of thickness dn. That is

(Number of states in the range(n,n+dn) ) = dVoct =
1

8
4πn2dn =

1

2
πn2dn. (7.9)

The product of the two factors is thus

(Number of states )× (occupation probability) =
1

2
πn2dnf(ε) =

1

2
πn2λe−βεdn. (7.10)

For this to become the probability distribution of velocities we need to relate the state labels
to the velocity. This is done by interpreting the energy of a state as the kinetic energy of the
particle:

1

2
Mv2 = ε =

~2

2M

(πn
L

)2

, (7.11)

which implies that

n =
ML

~π
v. (7.12)

For a system of N particles in a volume V let the number of particles with speed in the range
(v, v+dv) be NP (v)dv. This defines the Maxwell distribution function P (v). Putting together
everything that we have found so far about the relationship between n and v gives

NP (v)dv = dVoctf(ε) (7.13)

=
1

2
πn2λe−βε

dn

dv
dv (7.14)

=
1

2
πλ

(
ML

~π

)3

v2 exp

(
−βMv2

2

)
dv. (7.15)

Now recall that the fugacity is given by

λ =
n

nq
=
N

V

(
2π~2

M
β

) 3
2

, (7.16)

which implies that

1

2
πλ

(
ML

~π

)3

= 4πN

(
Mβ

2π

) 3
2

. (7.17)

Using this relationship we get that

P (v) = 4π

(
Mβ

2π

) 3
2

v2e−
βMv2

2 . (7.18)

This is known as the Maxwell distribution of velocities, and P (v)dv is the probability that a
particle has its speed in the range (v, v + dv).

On the problem sheet you will show that the root mean squared velocity is

vrms =
√
〈v2〉 =

(
3

Mβ

) 1
2

. (7.19)
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Include plots of the distribution for different temperatures.

For a given temperature T , P (v) shows the probability distribution of particle velocities for the
gas. At higher temperatures faster velocities become more likely and the distribution becomes
less sharply peaked.

Next we briefly discuss the collision cross section and mean free path for particles in a gas. If
we model the particles in a gas a rigid spheres that are moving around there will be collisions
between the particles. To estimate the collision rate consider that two particles of diameter d
will collide if their centre’s pass within distance d of each other.

Each particle sweeps out a path of length L and volume πd2L, d is the radius of the cross
sectional circle here as any particle whose centre is within this circle will collide with the particle
at the centre. It will collide with any other particle whose centre lies within this volume. The
average number of atoms in this volume is nV = nπd2L, the particle concentration multiplied
by the volume of the particles trajectory. This is also the average number of collisions.

Another useful quantity is the average distance between collisions, l = L
nπd2L

= 1
nπd2

. This is the
average distance a particle moves before a collision occurs also known as the mean free path.

For an ideal gas we can estimate the size of this mean free path l.

For Helium with d ' 2.2Å, the diameter of a Helium atom, the collision cross section is
σ = πd2 ' 15.2 × 10−16cm2. At T = 273K and atmospheric pressure the concentration of
particles in an ideal gas is known as the Loschmidt number,

n0 =
NA

VMol

= 2.69× 1019atoms cm−3. (7.20)

Here NA is Avagadro’s number and VMol is the molar volume at T = 273K. Combining this
with the colision cross section leads to the mean free path

l =
1

πd2n0

=
1

σn0

' 2.44× 10−5cm ∼ 1000 d. (7.21)

The associated collision rate is

vrms
l
∼ 105cms−1

10−5cm
∼ 1010s−1. (7.22)

The concentration depends on the pressure, and thus the mean free path does as well. At a
pressure of 10−6atm the concentration reduces by 10−6 and the mean free path increases to of
the order of 25cm.

This leads to the introduction of the Knudsen region. The Knudsen region is when the mean
free path is not small compared to the dimensions of the experimental apparatus, e.g. the
dimensions of the container containing the gas.

7.2 Transport processes

Consider a system that is not in thermal equilibrium, but in a non-equilibrium steady state
with a constant flow from one end of the system to the other. e.g. electrons in a conductor or
a thermal current if the system is in contact with two reservoirs at different temperatures.
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Include a figure here.

If T1 > T2 energy will flow through the system from reservoir 1 to reservoir 2. This energy flow
increases the total entropy, the entropy of reservoir 1 plus entropy of reservoir 2 plus entropy
of the system. The temperature gradient is the driving force for the energy transfer.

There is a linear regime where Flux ∝ force,

Flux = (coefficient)× (driving force) , (7.23)

provided that the force is not too large. Laws like this are called linear phenomenological laws,
e.g. Ohm’s law for conduction. See Table. 6 for examples of phenomenological transport laws
and the gradients that drive them.

The definition of the flux density of a quantity A is

JA = net quantity of A transported across unit area in unit time. (7.24)

The net transport is the transport in one direction minus the transport in the other direction,
e.g. transport R1 → R2 minus transport R2 −R1.

Effect Flux of particle property Gradient Law
Approximate
Coefficient

Diffusion
(Fick’s Law)

Number dn
dz

Jn = −D∇n D = 1
3
c̄l

Viscosity
(Newtonian Viscosity)

Transverse Momentum M dvx
dz

Jxz = −η dvx
dz

η = 1
3
ρc̄l

Thermal Conductivity
(Fourier’s Law)

Energy C̃V
dβ−1

dz
Ju = −K∇β−1 K = 1

3
C̃V c̄l

Electrical Conductivity
(Ohm’s Law)

Charge Ez = −dϕ
dz

Jq = σE σ = nq2l
Mc̄

Table 6: A variety of transport laws and the associated gradients that drive the transport
processes.

Example 7.1. Particle Diffusion:
Consider the diffusive case where the reservoirs are at the same temperature, T1 = T2, but
different chemical potentials, µ1 6= µ2. Since the difference in chemical potential is caused by
a difference in particle concentration, this means that there will be a flow of particles through
the system to bring the chemical potentials towards equilibrium. The driving force is thus
isothermal diffusion and the flow of particles in governed by Fick’s law

~Jn = −D∇n, (7.25)

with D the diffusivity, n the concentration, and ~Jn the flux density of particles.

Particles travel freely over distances up to the order of the mean free path before colliding.
Assume that in a collision at position z the particles reach a local equilibrium with µ(z), n(z).
Let lz = l cos θ be the projection of the mean free path onto the z-axis. Across the xy-plane at
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z there is a particle flux in the positive z-direction 1
2
n(z− lz)c̄z, with c̄z = 〈|v|〉 cos θ the average

speed in the z-direction and n(z − lz) the particle concentration at position z − lz. The flux
in the negative z-direction is −1

2
n(z + lz)c̄z. The net flux has contributions not just from the

z-axis, but from all the forward directions through a hemisphere. As such it is the average of

Jzn =
1

2
(n(z − lz)− n(z + lz)) c̄z = −dn

dz
c̄zlz, (7.26)

over all directions through the hemisphere. To find this we need the average values of c̄zlz =
c̄l cos2 θ. The average is

〈c̄zlz〉 = c̄l

∫ 2π

0

∫ π
2

0
cos2 θ sin θdθdϕ

2π

=
1

3
c̄l.

(7.27)

Thus

〈Jzn〉 = −1

3
c̄l
dn

dz
. (7.28)

This is the prototypical example of a transport problem.

In particle diffusion we are studying the transport of particles. The other transport processes
involve the transport of a property by particles:

� Thermal conductivity, transport of energy by particles.

� Viscosity, transport of momentum by particles.

� Electrical conductivity, transport of charge by particles.

The linear transport coefficient is thus proportional to the diffusivity D.

To get a feel for the general picture let ρA = concentration of quantity A. If A is a quantity
like charge or mass that is the same for all particles, then the flux in the z-direction is

JzA = ρA〈vz〉. (7.29)

Here 〈vz〉 is the mean drift velocity, this is zero in thermal equilibrium.

If A is a quantity which depends on the particle velocity, such as energy or momentum, then

JzA = fAρA〈vz〉, (7.30)

where fA is a quantity with |fA| of order unity, it depends on the velocity dependence of A
through the Boltzmann transport equation. We may see more about this later. For simplicity
here take fA = 1. The phenomenological transport law is then

~JA = −D∇ρA. (7.31)
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Example 7.2. Thermal Conductivity: For thermal conductivity Fourier’s law states,

~Ju = −K∇β−1 = −KkB∇T, (7.32)

with ~Ju the energy flux density, K the thermal conductivity, and ∇T the temperature gradient.
This form of Fourier’s law assumes energy flow but not particle flow. If particle flow is included
this leads to

Jzu ' ρu〈vz〉. (7.33)

The above expression is valid to within a term of order unity, the fu from above. By analogy
with the diffusion case the right hand side is equivalent to

−Ddρu
dx

= −D ∂ρu
∂β−1

dβ−1

dx
, (7.34)

which describes the diffusion of energy. Note that

∂ρu
∂β−1

= C̃V (7.35)

is the heat capacity per unit volume. This implies that

~Ju = −DC̃V∇β−1, (7.36)

and K = DC̃V = 1
3
C̃V c̄l. In particular we find that the thermal conductivity of a gas does not

explicitly depend on the pressure. This is true until the pressure is very low and we enter the
Knudsen region.

Example 7.3. *Viscosity: Next consider viscosity. This is a measure of the diffusion of
momentum parallel to the flow velocity, and transverse to the gradient of the flow velocity. e.g.
if the flow is in the x direction and the flow velocity gradient is in the z-direction then the shear
stress is given by

Xz = −ηdvx
dz

= Jz(px). (7.37)

Here Xz is the x-component of the shear force exerted by the gas on a unit area of the xy plane
normal to the z-axis. Newton’s second law implies that Xz acts if there is a net momentum
flux density. Recall from the diffusion case that Jzn = n〈vz〉 = −D dn

dz
.

The transverse momentum density is nMvx, giving the z-flux denisty as

nMvx〈vz〉 = −D d

dz
(nMvx) = −ηdvx

dz
, (7.38)

again this is true up to a velocity dependent function of order unity. Let ρ = nM be the mass
density, then

Jx(px) = ρ〈vz〉vx = −Dρdvx
dz

= −ηdvx
dz

. (7.39)

Using that D = 1
3
c̄l gives that

η =
1

3
c̄lρ. (7.40)
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As with the thermal conductivity, the viscosity looks to be independent of the pressure. How-
ever, this fails at very high pressure when the particles are nearly always in contact. It also
fails at very low pressure when the gas enters the Knudsen region.

The viscosity is usually easier to measure than the diffusivity. Thus it is useful to note that

D =
η

ρ
, K =

ηC̃V
ρ
. (7.41)

7.3 Generalised Forces

Any transport process leads to entropy transfer between the parts of the system. The rate of
change of entropy is related to the flux density of particles and energy. At constant volume we
know that

dσ = βdU − µβdN, (7.42)

where σ = S
kB

is the fundamental entropy. By analogy the entropy current is

~Jσ = β ~Ju − µβ ~Jn. (7.43)

Let σ̃ be the fundamental entropy density, and ∂σ̃
∂t

its net rate of change at a fixed position ~r.
Then there is a continuity equation, at unit volume,

∂σ̃

∂t
= gσ −∇ · ~Jσ. (7.44)

Here gσ is the rate of production of entropy and ∇· ~Jσ is the loss of entropy due to the transport
current.

The energy and total particle number are conserved in a transfer process so their continuity
equations are

∂u

∂t
= −∇ · ~Ju, (7.45)

∂n

∂t
= −∇ · ~Jn. (7.46)

Expanding the entropy current gives

∇ · ~Jσ = β∇ · ~Ju + ~Ju · ∇β − µβ∇ · ~Jn − ~Jn · ∇ (µβ) , (7.47)

while we also have that
∂σ̃

∂t
= β

∂u

∂t
− µβ∂n

∂t
. (7.48)

Putting it all together gives that

gσ = ~Ju · ∇β + ~Jn · ∇ (−µβ) = ~Ju · ~Fu + ~Jn · ~Fn, (7.49)

where ~Fu and ~Fn are generalised forces defined by the above equation. They are forces in the
sense that they are the gradient of an energy.
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Example 7.4. Einstein Relation: The generalised forces picture leads us to the Einstein
relations. Consider an isothermal process,

~Fu = 0, ~Fn = −β∇µ = −β (∇µint +∇µext) , (7.50)

where µint and µext are the internal and external chemical potentials respectively. For an ideal
gas we know that

µint = β−1 ln

(
n

nQ

)
⇒ ∇µint = (βn)−1∇n. (7.51)

For an electrostatic potential we also know that

µext = q∇ϕ = −q ~E, (7.52)

so that
~Fn = −n−1∇n+ β−1q ~E = −β

(
β−1n−1∇n− q ~E

)
. (7.53)

The particle flux density also has two terms

~Jn = −D∇n+ nµ̃ ~E, (7.54)

where D is the diffusivity and µ̃ is the mobility, the ratio of coefficients is D
nµ̃

. For the generalised

force the ratio of coefficients is 1
qβn

. By dimensional analysis these ratios must be the same,

this is because ∇n and ~E contribute in the same proportions to both terms, thus

D =
µ̃

qβ
. (7.55)

This is known as the Einstein relation between diffusivity and mobility. There are many such
relations and other ways to derive them.

7.4 Boltzmann Transport Equation

The basis of the classical theory of transport processes is the Boltzmann transport equation.
This is a partial differential equation in six variables, 3 positions and 3 velocities, describing the
evolution of a distribution function. We will consider the examples of the classical Maxwell-
Boltzmann and the Fermi-Dirac distribution.

Consider a classical distribution function f(~r,~v),

f(~r,~v)d~rd~v = number of particles in d~rd~v, (7.56)

where we interpret d~rd~v as the volume element of the six dimensional space. The Boltzmann
equation is derived by considering an infinitesimal time displacement of the distribution f(~r,~v).
Liouville’s theorem31 states that the distribution function is unchanged by this time displace-
ment,

f(t+ dt, ~r + d~r,~v + d~v) = f(t, ~r, ~v). (7.57)

31An important result in classical mechanics which says that “the phase-space distribution function is constant
along the trajectories of the system”. In more mathematical terms, the action of a symplectomorphism does
not change the volume of a region of phase space.
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This is true in the absence of collisions. With collisions, there will be a change,

f(t+ dt, ~r + d~r,~v + d~v)− f(t, ~r, ~v) = dt

(
∂f

∂t

)
collisions

. (7.58)

Using the chain rule this becomes(
∂f

∂t

)
dt+ d~r · ∇~rf + d~v · ∇~vf = dt

(
∂f

∂t

)
collisions

, (7.59)

with ∇~rf the gradient of f with respect to the spatial coordinates x, y, z, and ∇~vf the gradient
of f with respect to the velocity coordinates vx, vy, vz. Calling the acceleration ~α = d~v

dt
this

becomes (
∂f

∂t

)
+ ~v · ∇~rf + ~α · ∇~cf =

(
∂f

∂t

)
collisions

(7.60)

which is the Boltzmann transport equation.

It is often convenient to introduce a relaxation time, τc, through(
∂f

∂t

)
collisions

= −f − f0

τc
, (7.61)

where f0 is the distribution at thermal equilibrium. Assume that a non-equilibrium velocity
distribution is reached through the action of external forces. If the forces are suddenly removed
then the distribution decays to equilibrium over a time scale governed by τc. In other words the
distribution relaxes to equilibrium through scattering events. To see this explicitly consider

− f − f0

τc
=

(
∂f

∂t

)
collisions

=

(
∂f − f0

∂t

)
collisions

, as
∂f0

∂t
. (7.62)

This is solved by

(f − f0)t = (f − f0)t=0 e
− t
τc . (7.63)

Thus τc is the time it takes for f − f0 to decrease by e−1. In the relaxation time approximation
the Boltzmann equation is (

∂f

∂t

)
+ ~v · ∇~rf + ~α · ∇~cf = −f − f0

τc
. (7.64)

A steady state is defined as a configuration with(
∂f

∂t

)
= 0. (7.65)

We can now demonstrate how the Boltzmann transport equation leads to the phenomenological
transport laws that we encountered earlier.

Example 7.5. Particle Diffusion.
Consider an isothermal system with a concentration gradient. For a non-equilibrium distribu-
tion f only varying in the x-direction32 the relaxation time approximation of the Boltzmann
equation is

vx
∂f

∂x
= −f − f0

τc
. (7.66)

32That is f does not depend on y, z or any of the velocities.
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This equation is solved iteratively by writing f in terms of the equilibrium distribution. To
first order the distribution is

f1 ' f0 − vxτc
∂f0

∂x
. (7.67)

Now iterate this expression,

f2 ' f0 − vxτc
∂f1

∂x
= f0 − vxτc

∂f0

∂x
+ v2

xτ
2
c

∂2f0

∂x2
, (7.68)

where we have assumed that vx and τc are constant in x. This iterative approach is needed to
account for non-linear effects. We will not need to use this in our example. The explicit details
depend on the particular distribution f .

Classical Distribution. Take the equilibrium distribution to be

f0 = fMB = e(µ−ε)β, (7.69)

the classical Maxwell-Boltzmann distribution. The transport equation is linear in f and f0 so
we can normalise the distribution however we want, e.g. this is why we can take f0 = e(µ−ε)β

rather than fdvdt = # particles in dvdt. For the Maxwell-Boltzmann distribution we have
that

df0

dx
=
df0

dµ

dµ

dx
= βf0

dµ

dx
, (7.70)

so the first order solution is

f1 = f0 − vxτcβf0
dµ

dx
. (7.71)

The particle flux density is related to the distribution function and the density of states33 per
unit volume,

D̃(ε) =
1

4π

(
2M

~2

) 3
2

ε
1
2 , (7.72)

by integration

Jxn =

∫
vxfD̃(ε)dε. (7.73)

For the first order solution this becomes

Jxn =

∫
vxf0D̃(ε)dε− dµ

dx

∫
v2
xτcf0βD̃(ε)dε. (7.74)

The first term vanishes because the net particle flux vanishes for the equilibrium distribu-
tion34. The second integral does not vanish. To evaluate it we need to understand the velocity
dependence of the relaxation time.

If τc is a constant then,

Jxn = −dµ
dx
τcβ

∫
v2
xf0D̃(ε)dε. (7.75)

33This is the density of states for a spin zero particle!
34To see this explicitly we want to express everything in terms of the velocity through the identification

ε = 1
2mv

2, and the approximation that v2x = 1
3v

2. Then dε = mvdv and the integrand is an odd function of v
which vanishes when integrated over all velocities.
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This is evaluated by making the assumption that the velocity is equally shared between the
three directions, at least on average i.e under the integral, so that∫

v2
xf0D̃(ε)dε =

1

3

∫
v2f0D̃(ε)dε =

2

3m

∫ (
1

2
mv2

)
f0D̃(ε)dε =

2

3m

3

2

n

β
=

n

mβ
. (7.76)

The integral is the kinetic energy density, 3
2
n
β

of the particles, this is related to the equipartition
of the energy. Also note that the concentration is given by

n =

∫
f0D̃(ε)dε. (7.77)

We are thus left with the diffusion equation

jxn = −nτc
m

dµ

dx
= − τc

βm

dn

dx
, (7.78)

where we have used the ideal gas relation µ = β−1 ln n
nQ

. The Diffusivity is given by

D =
τc
βm

=
1

3
〈v2〉τc, (7.79)

where we have used that the thermal average of the velocity is given by 〈v2〉 = 3
β

which follows
from the same equipartition of energy argument as is used above.

Next consider the case τc = l
v
, where l is the mean free path. Now the particle flux density is

Jxn = −dµ
dx
lβ

∫
v2
x

v
f0D̃(ε)dε = −1

3

dµ

dx
lβ

∫
vf0D̃(ε)dε. (7.80)

The integral is just the thermal average speed times the concentration n〈v〉 = nc̄, giving

Jxn = −1

3
lc̄nβ

dµ

dx
= −1

3
lc̄
dn

dx
, (7.81)

this is just Fick’s law with the same diffusivity as we found previously D = 1
3
lc̄.

Fermi-Dirac Distribution. Now we tackle the case of the equilibrium distribution being
the Fermi-Dirac distribution

f0 = fFD =
1

e(ε−µ)β + 1
. (7.82)

For the Boltzmann equation we need the derivative of the distribution with respect to the
chemical potential, df0

dµ
. Previously we reasoned that this is a delta function for temperatures

far below the Fermi temperature, equivalently energies such that µ� β−1.

Another justification of this is as follows: consider the integral∫ ∞
0

F (ε)
df0

dµ
dε, (7.83)
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with F an arbitrary function of the energy. At low temperatures this is very large for ε ' µ so
if F (ε) is not wildly varying near µ we can replace it by F (µ),∫ ∞

0

F (ε)
df0

dµ
dε, = F (µ)

∫ ∞
0

df0

dµ
dε (7.84)

= −F (µ)

∫ ∞
0

df0

dε
dε (7.85)

= −F (µ) [f0(∞)− f0(0)] (7.86)

= F (µ)f0(0), (7.87)

since f0(∞) = 0. At low temperatures, µβ � 1, f0(0) ' 1 so∫ ∞
0

F (ε)
df0

dµ
dε ' F (µ), (7.88)

which implies that
df0

dµ
= δ (ε− µ) . (7.89)

Thus
df0

dx
= δ (ε− µ)

dµ

dx
. (7.90)

The particle flux density thus becomes35

Jxn = −dµ
dx
τc

∫
vxδ (ε− µ) D̃(ε)dε, (7.91)

with τc the relaxation time at ε = µ. This integral can be evaluated in the same way as above,∫
vxδ (ε− µ) D̃(ε)dε =

1

3

∫
vδ (ε− µ) D̃(ε)dε =

1

3
v2
F

3n

2εF0

=
n

m
. (7.92)

Here we have used that for T � TF the density of states per unit volume is D̃(µ) = 3n
εF0

and

2εF0 = mv2
F . Thus

Jxn = −dµ
dx
τc
n

m
. (7.93)

For T � TF we can evaluate the derivative of the chemical potential using

µ =
~2

2m

(
3π2n

) 2
3 , (7.94)

⇒ dµ

dx
=

2

3

~2

2m

(
3π2
) 2

3 n−
1
3
dn

dx
(7.95)

=
3

2

εF0

n

dn

dx
. (7.96)

This gives

Jxn = −2τc
3n
εF0

n

m

dn

dx
= −1

3
τcv

2
F

dn

dx
, (7.97)

A diffusion equation with diffusivity

D =
1

3
v2
F τc (7.98)

Finding this diffusion equation was no more complicated in the Fermi-Dirac case than for a
classical gas.

35we have again used the first order expansion for f and used that the first integral term vanishes.
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Electrical Conductivity. The isothermal electrical conductivity follows from the same argu-
ment if the particle flux density is multiplied by the charge q, and dµ

dx
is replaced by q dϕ

dx
= −qEx,

the gradient of the electrostatic potential.

This implies that the current density is

~Jq =
nq2τc
m

~E = σ ~E, (7.99)

with σ the conductivity, for both the classical gas and the Fermi-Dirac distribution.

8 Heat Conduction Equation

The form of the Phenomenological transport laws that we encountered above are closely related
to some equations that you may have met in a Fourier analysis course. As the total particle
number is conserved36 there is a continuity equation

∂n

∂t
+∇ · ~Jn = 0. (8.1)

Now consider Fick’s law, Equation (7.25), and take its divergence, noting that ∇ · ∇n = ∆n,
to find

∂n

∂t
= D∆n. (8.2)

This is known as the diffusion equation, and it has a variety of interesting solutions found by
considering the Fourier transform37.

If we apply the same argument to Fourier’s law ~Ju = −K∇β−1, and use the continuity equation
for energy density,

∂ρu
∂t

+∇ · ~Ju = C̃V
∂β−1

∂t
+∇ · ~Ju = 0, (8.3)

we arrive at the heat equation
∂T

∂t
= DT∆T, (8.4)

where DT = K
C̃V

is the Thermal diffusivity. The heat equation is another example of a type

of partial differential equation known generally as a diffusion equation. This is because useful
solutions are pulses that spread out, diffuse, with time.

One trick to solve an equation of the form

∂Θ

∂t
= D∇Θ, (8.5)

is to take a plane wave Ansatz,

Θ = Θ0e
i(~k·~r−ωt), (8.6)

36We are not allowing the creation of new particles, just their movement between parts of the total system.
37Here we will just quote the solutions and you can check them by substituting in rather than Fourier

transforming
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with wave vector ~k and angular frequency ω. These solutions are highly damped waves since
~k2 is complex. Substitution into Equation (8.5) leads to

~k2 = i
ω

D
, (8.7)

which is known as a dispersion relation. In fact any equation which give the frequency as a
function of the wave vector is known as a dispersion relation e.g. ω = kcsound for phonons.

A nice example of using the damped wave solution is the following.

Example 8.1. Penetration of Temperature Oscillations
Consider the variation of temperature in a 1D semi infinite medium, e.g. z ∈ [0,∞) with
boundary condition

Θ(0, t) = Θ0 cosωt = Θ0<
{
ei(

~k·~r−ωt)
}
, (8.8)

with Θ0 real.

Then for z > 0 the solution is

Θ(z, t) = Θ0<
{
ei(

~k·~r−ωt)
}

(8.9)

= Θ0<
{

exp

(
i
3
2

√
ω

D
z − iωt

)}
using k =

√
i
ω

D
, (8.10)

= Θ0e
−
√

ω
2D<

{
exp

(
i

[√
ω

2D
z − ωt

])}
using i

3
2 =

i− 1√
2
, (8.11)

= Θ0e
− z
δ<
{

exp
(
i
[z
δ
− ωt

])}
where δ =

√
2D

ω
, (8.12)

= Θ0e
− z
δ cos

(z
δ
− ωt

)
. (8.13)

The parameter δ introduced above has units of length and is called the characteristic penetration
depth of the temperature variation. e.g. at z = δ the amplitude of the oscillation is reduced
by e−1. Often δ is called the skin depth, such as the depth of magnetic field penetration in a
superconductor. If we estimate the thermal diffusivity of soil to be D ' 1 × 10−3cm3s−1 then
we can estimate δ for both the day-night heating-cooling cycle and the annual summer-winter
temperature variation. You will consider this in more detail on problem sheet 5. The angular
frequency of each cycle is different; for day-night variation

ω =
2π

1 day
= 0.73× 10−4s−1 ⇒ δ ' 5cm, (8.14)

for the annual cycle find
δ ' 1m. (8.15)

Thus at a depth of 10cm the day night cycle of temperature variation averages out and the
temperature is approximately constant. However, to cancel out the annual variation requires
going to a greater depth. In reality, D is highly sensitive to soil composition.
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Development of a pulse. Next we consider pulsed solutions to Equation (8.5):

Θ (x, t) =
1√

4πDt
e−

x2

4Dt . (8.16)

This is a normalised Gaussian function, you will work with the 2D and 3D solutions on problem
sheet 5. To find this solution take the Fourier transform of Equation (8.5), then solve the
equation then take the inverse Fourier transform.

The solution in Equation (8.16) is a pulse that spreads out with time. Initially the pulse is a
delta function,

Θ(x, 0) = δ(x) =

{
∞ when x = 0

0 else
, (8.17)

with ∫ ∞
−∞

δ(x)dx = 1. (8.18)

This can be any sort of pulse; temperature, concentration, etc. For example if we have a brief
laser pulse depositing heat Q on a surface; we get a heat pulse spreading out from the impact
point,

Θ(x, t) =
2Q

C̃V

1√
4πDt

e−
x2

4Dt . (8.19)

The factor of 2 appears here because all the heat is flowing away from the impact point, where
as the flow above was symmetric.

A pulse like this spreads out with increasing t with mean squared,

〈x2〉 =

∫
x2Θ(x, t)dx∫
Θ(x, t)dx

= 2Dt, (8.20)

demonstrating this requires evaluating two Gaussian integrals. The rms position is thus

xrms =
√
〈x2〉 =

√
2Dt. (8.21)

There is a relation to Brownian motion here which we may see more about later. Think of
the pulse as a temperature distribution, its width is proportional to t

1
2 . This is a general

characteristic of diffusion in 1D and of random walks in 1D. It differs from the plane wave
pulse which has dispersion ω = vk. Consider a random walk with step size t0, after N steps
the time is t = Nt0 and the rms position is

xrms(t) =
√

2Dt0N
1
2 . (8.22)

This is observed in Brownian motion where the rms position is proportional to the square root
of the number of steps.
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Diffusion with a boundary. Let us return to a situation where we have diffusion on a
semi-infinite interval, x ∈ [0,∞), with a boundary at x = 0. Given a solution to Equation (8.5)
we can ask if integrating or differentiating it leads to another solution. In some cases it does.
For example, consider:

Θ(x, t) =
1√

4πDt

∫ x

0

e−
v2

4Dtdv, (8.23)

=
1

π

∫ u

0

e−s
2

ds, where s =
v√
4Dt

and u =
x√
4Dt

, (8.24)

= erf(u). (8.25)

Here erf(u) is the error function. It satisfies

erf(0) = 0, lim
x→∞

erf(x) = 1, (8.26)

and its values can be looked up in a table.

If we consider a situation of a temperature pulse in a medium with a fixed boundary, and
boundary conditions

Θ(0) = Θ0, Θ(∞) = 0, (8.27)

then the solution is

Θ(x, t) = Θ0

[
1− erf

(
x√
4Dt

)]
. (8.28)

Note that the distance at which Θ(x, t) reaches a specific value is proportional to
√

4Dt. This
approach is useful when studying the diffusion of impurities in a semiconductor.

Time-independent Distribution. Consider a time independent function Θ(x), applied to
this function the diffusion equation reduces to the Laplace equation,

∆Θ(x~x) = 0. (8.29)

Focus on the case (x, y, z) ∈ R2 × [0,∞) with

Θ(x, y, 0) = Θ0 sin kx, (8.30)

on the boundary. In the medium the solution becomes

Θ(x, y, z) = Θ sin kxe−kz, (8.31)

e.g. the temperature variation is damped exponentially with distance from the boundary. This
temperature distribution must be maintained by a constant source of heat at z = 0. It can be
used to model situations where a specific point is being constantly heated, or where an electrode
is constantly injecting a current into a metal.

A More on Differentials

In lecture 1 we encountered the concept of an exact differential, and implicitly encountered the
concept of an inexact differential. I want to give a bit more information and some examples.
If you have any questions about this feel free to email me.
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A.1 Exact differentials

The definition of an exact differential given in the lecture notes is the following:

Definition A.1. A function F (x1, x2) of at least two independent variables, x1, x2 has differ-
ential

dF =

(
∂F

∂x1

)
x2

dx1 +

(
∂F

∂x2

)
x1

dx2, (A.1)

where
(
∂F
∂x1

)
x2

means the derivative of F with respect to x1 holding x2 constant. If F and its

derivative are continuous and(
∂

∂x1

(
∂F

∂x2

)
x1

)
x2

=

(
∂

∂x2

(
∂F

∂x1

)
x2

)
x1

(A.2)

e.g. the partial derivatives commute, then dF is called an exact differential.

This condition of commuting partial derivatives is true for most sensible examples of functions.
A function that does not satisfy this is

f(x, y) =


xy (x2 − y2)

x2 + y2
, (x, y) 6= (0, 0)

0 (x, y) = (0, 0).

(A.3)

This function is continuous and its partial derivatives are continuous. However, the second
partial derivatives, ∂2f

∂x∂y
etc, are not continuous. This example is taken from the wikipedia page

Symmetry of second derivatives38. As long as we avoid pathological examples, if we write down
a function F (x1, x2) then it will have an exact differential.

The examples suggested in the lecture of quantities which are discontinuous at a boundary do
fail to give exact differentials. However, they violate the conditions about continuity of F or
its first derivatives rather than the symmetry of mixed partial derivatives. It is hard to find
examples of functions which violate this condition.

A.2 Inexact differentials

An inexact differential is in some sense the opposite of an exact differential.

Definition A.2. An inexact differential d̄F is a differential for which no function F satisfies

F =

∫
d̄F. (A.4)

They are differentials which cannot be integrated. In thermodynamics the most common ex-
amples are the work and the heat expressed as

d̄W = −PdV, (A.5)

d̄Q = TdS. (A.6)

38Found here https://en.wikipedia.org/wiki/Symmetry_of_second_derivatives.
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One way to realise that these are not exact is to consider them as parts of the exact differentials

d (−PV ) = −V dP − PdV, (A.7)

d (TS) = TdS + SdT. (A.8)

We will see both of these exact differential when transforming between the different thermody-
namic potentials in later lectures.

The classical mechanics example that I gave, dW = ~F ·d~x is useful to have in mind. It highlights
that if F is conservative, i.e ~F = ∇V , then we can integrate −~F ·d~x to find the potential energy
V . This is because we can integrate the components of ~F in a consistent way so that the same
V differentiates to all of them.

Example A.3. Consider the force ~F = − (xx̂+ yŷ + zẑ) = −~r. This is a conservative force39

and we find V in the following way: Compute∫
Fxdx = −x

2

2
+ C(y, z), (A.9)∫

Fydy = −y
2

2
+ C(x, z), (A.10)∫

Fzdz = −z
2

2
+ C(x, y). (A.11)

The “constant” terms are only constant with respect to the variable that is integrated over. If
~F = −∇V then dV = ∇V · dx = −~F · d~x and V is found from

V = −
∫
Fxdx−

∫
Fydy −

∫
Fzdz =

r2

2
− C(y, z)− C(x, z)− C(x, y). (A.12)

The constant pieces are found by checking ∇V is consistent with the given vector ~F :

C(y, z) = constant, (A.13)

C(x, z) = constant, (A.14)

C(x, y) = constant. (A.15)

During this module you should acquire more experience with inexact differentials.

A.3 Examples

Here are some simple examples of exact and inexact differentials and how to check.

Example A.4. The differential df = xdx+ ydy is an exact differential as

∂

∂y

(
∂f

∂x

)
= 0, (A.16)

∂

∂x

(
∂f

∂y

)
= 0 (A.17)

agree.

39Feel free to compute that ∇× ~F = 0 to check the PY2101 condition for conservative forces.
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Example A.5. du = 2ydx+ xdy is an inexact differential. If it was exact then we could write

∂u

∂x
= 2y, (A.18)

∂u

∂y
= x. (A.19)

However, this leads to the mixed partial derivatives

∂

∂y

(
∂u

∂x

)
= 2, (A.20)

∂

∂x

(
∂u

∂y

)
= 1 (A.21)

which do not agree.

Example A.6. The differential df = ydx− xdy is not an exact differential as

∂

∂y

(
∂f

∂x

)
= 1, (A.22)

∂

∂x

(
∂f

∂y

)
= −1 (A.23)

which do not agree.

B Mathematical Identities

This appendix is a list of useful mathematical identities that are needed in the main body of
the lecture notes.

B.1 Useful Integrals

This is mostly a reproduction of Appendix C of [Gue07].

Example B.1. Maxwell-Boltzmann Integrals

In =

∫ ∞
0

yn exp
(
−by2

)
dy (B.1)

There are three cases involved in evaluating this:

1. I0 = 1
2

(
π
b

) 1
2 .

2. I1 = 1
2b

.

3. For n ≥ 2 we have the recurrence relation In =
(
n−1
2b

)
In−2. Using this every integral with

the form of Equation. (B.1) to a multiple of either I0 or I1.
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Example B.2. Fermi-Dirac Integrals
It is frequently necessary to approximate integrals involving the Fermi-Dirac distribution f(ε).
These integrals typically have the form

I =

∫ ∞
0

dF (ε)

dε
f(ε) dε, (B.2)

with F (ε) a function specific to each occurrence of this integral. Close to ε = µ this can be
approximated as

I = F (µ) +
π2

6
(kBT )2 F ′′(µ) + . . . . (B.3)

The coefficient of the second derivative term is found from∫ ∞
0

y2ey

(1 + ey)2dy =
π2

6
. (B.4)
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