
Twistor Theory Lectures: solutions to selected exercises

C. Ross, Last updated December 4, 2017

I will try and provide solutions to some of the exercises that we were given in the lectures.

1 Conventions and useful facts

We will be interested in line bundles on P1 of degree m so it is useful to set out what we mean
by the tautological and hyperplane bundle and their tensor powers.

Example 1.1. The tautological line bundle over P1 is denoted O(−1). In [1] the definition is

O(−1) = {(λα̇, ρα̇) ∈ P1 × C2|ρα̇ = µλα̇, µ ∈ C}, (1.1)

In words we have that ρα̇ is an element of the complex line which passes through λα̇. Following
[2] on P1 we use the two charts

U+ = {[λ1̇ : λ2̇]|λ1̇ 6= 0}, φ+ : [λ1̇ : λ2̇] 7→
λ2̇
λ1̇

= λ+,

U− = {[λ1̇ : λ2̇]|λ2̇ 6= 0}, φ− : [λ1̇ : λ2̇] 7→
λ1̇
λ2̇

= λ−.

We can immediately see that on the overlap U+ ∩U− we have that λ+ = λ−1− . We can immedi-
ately compute that the map ψ+− = φ+ ◦ φ−1− : φ−(U+ ∩ U−)→ φ+(U+ ∩ U−) satisfies

ψ+−(λ−) = φ+ ◦ φ−1− ◦ φ−([λ1̇ : λ2̇]) = φ0([λ1̇ : λ2̇]) = λ+. (1.2)

To understand the bundle O(−1) we consider the two trivialisations

t+ : O(−1)|U+ → U+ × C,
t− : O(−1)|U− → U− × C.

More explicitly the maps act as follows

t+ : ([1 : λ+], µ(λ1̇, λ2̇)) 7→ (λ+, µλ1̇),

t− : ([λ− : 1], µ(λ1̇, λ2̇)) 7→ (λ−, µλ2̇)

on the overlap O(−1)|U+∩U− we compute the transition function f+− using Ψ+− = t+ ◦ t− with

Ψ+−(λ−, µλ2̇) = (ψ+−(λ−), f+−(λ−)µλ2̇) = (λ+, f+−(λ−)µλ2̇). (1.3)

Going through all the details we see that

Ψ+−(λ−, µλ2̇) = t+ ◦ t−1− ◦ t− ([λ− : 1], µ(λ1̇, λ2̇)) ,

= t+ ([1 : λ+], µ(λ1̇, λ2̇)) ,

= (λ+, µλ1̇),
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where we read off that

f+−(λ−) =
λ1̇
λ2̇

= λ− = λ−1+ . (1.4)

The fact that f+−(λ−) = λ−1+ is one of the reasons that we call the tautological bundle O(−1).

The hyperplane bundle is another line bundle over P1 which is the formal dual of the tautological
bundle we call the hyperplane bundle O(1) and say that O(1) = O(−1)∗. It will be the bundle
with transition functions

f+−(λ−) =
λ2̇
λ1̇

= λ+. (1.5)

We call the tensor power bundles

O(m) = O(1)⊗m, O(−m) = O(−1)⊗m (1.6)

for m ∈ N. The will have transition functions

f+−(λ−) =

(
λ2̇
λ1̇

)m
= λm+ ∀m ∈ Z. (1.7)

As for the global sections of these bundles, on the overlap U+ ∩ U− they should obey

s+(λ+) = f+−(λ−)s−(λ−) (1.8)

since f+−(λ−) = λm+ we have that

s+(λ+)λm
1̇

= s−(λ−)λm
2̇
. (1.9)

This allows us to interpret the sections as

F (λα̇) =

{
s+(λ+)λm

1̇
on U+,

s−(λ−)λm
2̇

on U2,
(1.10)

these are homogeneous function of degree m. Now when m < 0 this would mean that the
sections need to have a pole somewhere so they cannot be global. Thus we can see that O(m)
only has global sections for m ≥ 0.

Example 1.2. We have different reality conditions depending on the metric we want to work
with. These reality conditions will determine how the σµαα̇ are related to the Pauli matrices, σi,
and the identity. The three cases are

1. Euclidean E we take
x̄ = −σ2xσT2 . (1.11)

2. Split signature of Kleinian, K, take
x̄ = x. (1.12)

3. Lorentzian M.
x̄ = −xT . (1.13)

It is important to note that imposing a given reality condition will tell us how we can express
the (σµ)αα̇ in terms of I2 and the three Pauli matrices.
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2 Lecture 1

Exercise 2.1. Show that if xµ 7→ Λµ
νx

ν then

x 7→ g1xg2 (2.1)

where gi, g2 ∈ SL(2,C) and x = xµσαα̇µ .

This is establishing the relationship between SO(4,C) and SL(2,C) as being

SO(4,C) =
SL(2,C)× SL(2,C)

Z2

. (2.2)

Doing this explicitly requires a lot of work using identities for the matrices (σµ)α,α̇ and I won’t
give the details here. A version of this for the specific case of M is given in [3]

Exercise 2.2. What groups do g1,2 belong to in all three cases, E, K, M?

There are three cases to consider:

1. We start by considering the split signature case where the reality condition is given by
Equation (1.12). If x′ = g1xg2 then we have that

ḡ1x̄ḡ2 = x̄′, (2.3)

= g1x̄g2, (2.4)

from which we see that gi = ḡi and thus g1, g2 ∈ SL(2,R). In this case the connected
component of the Lorentz group will

SO0(2, 2) =
SL(2,R)× SL(2,R)

Z2

. (2.5)

Note that we could have imposed an alternative reality condition which would have re-
sulted in g1,2 ∈ SU(1, 1) but since SU(1, 1) ' SL(2,R) this would be equivalent.

2. For Lorentzian signature we use the reality condition given by Equation (1.13). This
means that if x′ = g1xg2 we have that

−ḡ1xT ḡ2 =
(
gT2 x

TgT1
)
, (2.6)

which means that g2 = g†1 and as such the two copies of SL(2,C) are not independent
and we have that

SO0(1, 3) =
SL(2,C)

Z2

. (2.7)

3. The Euclidean case is actually the most involved of the three with an analysis of the
components of the matrices needed to see that they lie in SU(2). The details are given
in [1]
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Exercise 2.3. For M a four dimensional spin manifold show that the decomposition of the
tangent space

TM ' S ⊗ S̃ (2.8)

amounts to picking a conformal structure on M .

This is discussed as Remark 1.1 in [1] but I will sketch the argument here. Before sketching
a solution we first mention that choosing a conformal structure means picking an equivalence
class of metrics, [g], of sections of T ∗M � T ∗M such that g ∼ g′ if g′ = fg for f a nowhere
vanishing, smooth, positive function. Now the decomposition

TM ' S ⊗ S̃ (2.9)

means that we have a line sub bundle

L = Λ2S ⊗ Λ2S̃ ⊂ T ∗M � T ∗M. (2.10)

This means that given symplectic forms ε on S and ε̃ on S̃ the sections of L will be of the form
fεε̃ however this is nothing but a metric up to a smooth positive definite function f which is
[g].

Exercise 2.4. Show that O(−m) has no global sections ∀m ∈ N.

This is seen by looking at the definition of a degree −m homogeneous function, that

F (µλα̇) = µ−mF (λα̇), (2.11)

and seeing that the negative power of µ implies that F must have a pole and is hence not
global.

Exercise 2.5. Check the measure dλα̇λ
α̇ in local coordinates, λ± on U±.

To see this we just expand out the indices as follows

dλα̇λ
α̇ = εα̇β̇(dλβ̇)λα̇,

= dλ2̇λ1̇ − dλ1̇λ2̇,

=
(
λ1̇
)2
dλ+,

= −
(
λ2̇
)2
dλ−.

3 Lecture 2

Exercise 3.1. Check that δq ◦ δq−1 = 0.

This is a standard exercise that involves seeing that we have lots of terms like
ra0...âi...ana0...an

r
a0...âj ...an
a0...an fa0...âi...âj ...an appearing with the restrictions the other way around and the

sign flipped. It might be instructive to include a simple example of, e.g the q = 1 case as that is
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what we need for P1 as the cover only has a double intersection. Consider fi0,...,ip : Ui0∩· · ·∩Uip
then the definition of the co-boundary map, δ is that

δp(fi0,...,ip) = (p+ 1)r[ip+1fi0,...,ip], (3.1)

where rip+1 is short hand for the restriction map from Ui0 ∩ · · · ∩ Uip to Ui0 ∩ · · · ∩ Uip ∩ Uip+1 .
If we take the case p=1 then we can see that

δ1 ◦ δ0(fi0) = δ1(r[i1fi0]),

= 3r[i2ri1fi0],

=
1

2
(ri2ri1fi0 − ri2ri0fi1 + ri1ri0fi2 − ri1ri2fi0 + ri0ri2fi1 − ri0ri1fi2) ,

= 0.

Exercise 3.2. Check that H1(U ,O(m)) = 0 when m ≥ −1.

This follows from what we saw in the lectures for m < −1 and the fact that the middle term
vanishes if m ≥ −1 and we are just left with f+− = r++−h+ + r−+−h− where h± is a holomorphic
defined on all of U±.

Exercise 3.3. Compute the Radon-Penrose transform of

f+− =
1

z1z2
. (3.2)

This is a nice question which lets us brush the dust off of our complex analysis knowledge. We
will work on the patch U+ using coordinates λ+ =

λ2̇
λ1̇

, In this case we know from Exercise 2.5

that the measure is
dλα̇λ

α̇ = (λ1̇)
2dλ+. (3.3)

Putting this into the expression for φ(x) given by the Penrose transform we have that

φ(x) = − 1

2πi

∮
γ

(λ1̇)
2dλ+

z1z2
,

= − 1

2πi

∮
γ

dλ+(
x11̇ + x12̇λ+

) (
x21̇ + x22̇λ+

) ,
where γ is a curve in U+ ∩ U− and we have used the incidence relation that zα = xαα̇λα̇. This
integral will now pick up a contribution from the poles depending on which of them are inside
the curve γ. This comes down to picking which Green’s function we are interested in. If we
want the usual Green’s function then we pick γ so that it contains one of the poles but not the

other this means that we will only pick up one residue. Say we pick γ such that p1 = −x11̇

x12̇
is

inside γ then we find that

φ(x) = − lim
λ+→p1

1

x12̇x22̇
(
λ+ + x21̇

x22̇

) =
1

detx
. (3.4)

If we picked both poles to be contained in γ we would find that φ(x) = 0. This problem is
discussed on pages 352 and 353 of [4].
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Exercise 3.4. By imposing translational invariance in one direction we reduce our space time
from C4 to C3, we also know that instantons on C4 which are translationally invariant in one
direction are monopoles on C3. By following through the consequences of this reduction find
the monopole twistor space, P 2.

We should find that P 2 = OP1(2). The starting point is the twistor correspondence that we
saw in the lectures

F = M × P1

π2

xx

π1

&&
P 3 M

(3.5)

where P 3 = OP1(1)⊕OP1(1). π1 is a P1 fibraton due to the projectivisation of S̃∗ which has as
homogeneous fibre coordinates the λα̇. To understand π2 we introduce the vector fields

Vα = λα̇∂αα̇, (3.6)

which form an integrable distribution, < Vα >= D, which leads to a foliation of F with
2-dimensional leaves. The twistor space P 3 is then F/D and has coordinates (zα, λα̇) =

(xαβ̇λβ̇, λα̇) where the relation xαβ̇λβ̇ = zα is known as the Penrose incidence relation.

Before doing the dimensional reduction it is important to note that there is not a distinction
between chiral and anti-chiral spinors in three dimensions and the splitting of the tangent
bundle will be

TC3 = S � S, (3.7)

This means that we will not have dotted and undotted indices but just α, β = 1, 2. This means
that the coordinates on C3 will be

xαβ = x(αβ) + x[αβ] = Y αβ + εαβx4. (3.8)

It is this x4 that we will impose translational invariance with respect to. The first thing this
does is to make the spinorial deribvatives symmetric in their two indices, that is

∂αβ =
∂

∂xαβ
=

∂

∂xβα
= ∂βα. (3.9)

We can still construct vectors which generate null translation, Vβ = λα∂(αβ) and these vectors
still generate an integrable distribution which results in a foliation of F with two dimensional
leaves. The difference comes when we consider the kernel of these vectors. In the four dimen-
sional case we had that

Vα(zβ) = 0 (3.10)

but now we would find that

Vγ(x
αβλβ) = λδλβ∂(δγ)x

αβ = λδλβ
1

2

(
δαδ δ

β
γ + δβδ δ

α
γ

)
=

1

2
λαλγ, (3.11)

so our incidence relation will not be zα = xαβλβ. We take in fact the incidence relation
z = xαβλαλβ, which means that z is of weight 2, as this satisfies

Vγ(z) = Vγ(x
αβλαλβ) = λδλαλβ∂(δγ)x

αβ = λδλαλβ
1

2

(
δαδ δ

β
γ + δβδ δ

α
γ

)
= 0, (3.12)
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so they do live in the kernel of the distribution. This tells us that P 2 has coordinates (z, λα)
where the λα are homogeneous on a P1 and the z′s are of weight two, this tells us that the
three dimensional twistor space will be the bundle

P 2 = OP1(2), (3.13)

which is what we wanted.

It would be interesting to check some of the details about getting a solution to the monopole
equations, fαβ = ∇αβφ, by putting a holomorphic bundle on P 2. Also maybe try and see how
this is related to the self-dual string twistor space.

Exercise 3.5. Compute the charge of the BPST instanton,. The following integral will be
useful ∫

d4x
1

(x2 + Λ2)4
=

π2

6Λ4
. (3.14)

I have done this before, compute tr(fabfab), where we were given the fab in the lecture, and
then integrate to get 1. The components fab are also given in Equation 3.31 of [1].

4 Lecture 3

Exercise 4.1. Use the Bianchi identity and the transversal gauge condition to obtain the
recursion relations given in the notes. That is check the computations leading up to Equation
5.10 in [1].

This is a long computation that I probably won’t do.

Exercise 4.2. Show that for F− the anti self-dual piece of the two form curvature, F , the
following holds ∫

tr
(
F− ∧ F−

)
= −1

2

∫
tr (F ∧ ?F ) +

1

2

∫
tr (F ∧ F ) . (4.1)

This is a fairly straight forward exercise and just uses that the antiself-dual part of F is given
by

F− =
1

2
(F − ?F ) , (4.2)

plug this into the left hand side of Equation (4.1) and you will get the result.

5 Lecture 4

These exercises are related to content from [5, 6]

Exercise 5.1. Show that the twistor space for higher gauge theory can be interpreted as

P = T ∗P3 ⊗OP3(2). (5.1)

Hint the one-forms will look like
dλAλBε

ABCDωCD (5.2)

where ωCD can be shown to correspond to xCD.
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6 Lecture 5

These exercises are related to the content of [7, 8]

Exercise 6.1. Check that τ̃ is killed by contracting with vectors in D, in other words show
that

iDτ̃ = 0. (6.1)

We have from the lectures that

τ̃ = λα̇∇λα̇ = λα̇
[
dλα̇ − ω β̇

α̇ λβ̇

]
(6.2)

and D is the distribution generated by the vector VB = λβ̇EBβ̇ + λα̇λγ̇ω
γ̇

Bα̇β̇
∂
∂λβ̇

. Here the EAα̇

form a vielbein for the curved four manifold M , the EAα̇ are their dual vectors and ω γ̇

Bα̇β̇
EBα̇

are the connection one forms for the spin connection on S̃. This means that the EAα̇ should
be independent of the λα̇ just as the λα̇ are independent of the spacetime coordinates. e.g.

∂

∂λβ̇
EBα̇ = 0, EAγ̇λβ̇ = 0. (6.3)

With this we can compute

iVA τ̃ = λα̇VA(λα̇)− λα̇iVA(ω β̇
α̇ )λβ̇,

= λα̇λβ̇λγ̇ω
γ̇

Aβ̇δ̇

∂

∂λδ̇
λα̇ − λα̇λβ̇λ

γ̇ω β̇

Bδ̇α̇
EAγ̇(E

Bδ̇),

= λα̇λβ̇λγ̇ω
γ̇

Aβ̇α̇
− λα̇λβ̇λ

γ̇ω β̇
Aγ̇α̇ ,

= 0.

Now we just note that the integral contraction is both + and C∞(M) linear so if this is true
for the basis VA it will be true for any vector in the distribution D generated by VA giving us
the desired result.

Exercise 6.2. Compute the explicit for of dτ̃ from τ̃ = λα̇∇λα̇.

This is another computation which uses the explicit form of τ̃ as well as the relationship between
the spin connection and the curvature. The first thing to note is that since the index is raised
we will have

∇λα̇ = dλα̇ + ωα̇
β̇
λβ̇. (6.4)

Next note that
dτ̃ = dλα̇ ∧∇λα̇ − λα̇λβ̇dω

β̇
α̇ − λα̇ω

β̇
α̇ ∧ dλβ̇. (6.5)

Now we can compute that

∇λα̇ ∧∇λα̇ = dλα̇ ∧∇λα̇ + ωα̇γ̇ ∧ λγ̇dλα̇ − ω α̇
γ̇ ∧ ω

β̇
α̇ λ

γ̇λβ̇, (6.6)

so using the antisymmetry of the spin connection we have that

dτ̃ = ∇λα̇ ∧∇λα̇ − λα̇λβ̇dω
β̇
α̇ + ω α̇

γ̇ ∧ ω
β̇
α̇ λ

γ̇λβ̇. (6.7)
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Note that the connection one forms will satisfy

Ω β̇
α̇ = dω β̇

α̇ − ω
γ̇
α̇ ∧ ω

β̇
γ̇ , (6.8)

where Ω β̇
α̇ is the curvature two form. Using this identity we have that

dτ̃ = ∇λα̇ ∧∇λα̇ − λα̇λβ̇Ω β̇
α̇ . (6.9)

If we knew more about the connection two form and its relation to the Riemann curvature
tensor we could do more with this expression.
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