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1 Introduction

These notes are to complement two lectures that I gave on topological solitons as part of an
LMS scheme 3 grant to NBMPS. The material in these notes has more detail and extends the
content of the lectures. The main references for background material on topological solitons are
[MS04] and [Col88]. For magnetic skyrmions the main reference is [BSRS20]. I have included
some exercises in red that are worth solving if you want to fully understand the material.

2 A primer on solitons

2.1 What is a topological soliton

The first thing that we need to establish is what exactly is a topological soliton in a field theory.
A great resource for this material and the inspiration for a lot of this section is Chapter 6 in

1If there are any comments or corrections that you feel I should know about you can contact me at
c.ross[at]keio.jp
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[Col88]. In most field theories the finite energy, non-singular, solutions are dissipative and
they eventually decay to the vacuum. However, there are examples of field theories with static
solutions that are lumps of energy which hold themselves together through self-interaction.
There can be more complicated non-dissipative solutions which are periodic in time or have a
complicated time-dependence. If the theory is Lorentz or Galilean invariant then static lumps
can be boosted to give time-dependent solutions.

There are two useful definitions of a soliton:

1. (weak) The lump of energy does not dissipate, it can propagate and it has finite energy.

2. (strong) The lumps satisfy the weak definition and survive scattering with other lumps.

In [Col88] solitons are called lumps with soliton reserved for lumps which satisfy the strong
definition. The topology comes in from the space of finite energy, non-singular, field configura-
tions. We say that a soliton is topological if it can not be continuously deformed to the vacuum
through a path in the space of finite energy, non-singular, field configurations. In these notes
we will be quite cavalier with the term topological.

2.2 Examples of solitons

The most common examples of field theories possessing topological soliton solutions are φ4

model and the Sine-Gordon model both considered in 1 + 1 dimensions. As these theories only
differ in the choice of potential term we first set out some general conventions about 1 + 1D
scalar field theories. We work with the metric such that g00 = 1 = −g11 and consider the
Lagrangian density,

L =
1

2
∂µφ∂

µφ− U(φ), (2.1)

and energy

E =

∫
dx

[
1

2
(∂0φ)2 +

1

2
(∂1φ)2 + U(φ)

]
. (2.2)

It is sometime convenient to split off the kinetic and potential energy terms as

T =

∫
dx

[
1

2
(∂0φ)2

]
, (2.3)

V =

∫
dx

[
1

2
(∂1φ)2 + U(φ)

]
. (2.4)

The equation of motion following from Eq. (2.1) is

∂µ∂
µφ+

dU(φ)

dφ
= 0. (2.5)

We assume that the energy is bounded below a minimum value which implies that U(φ) is
bounded below2 by some constant, U0. It follows from Eq. (2.2) that a state of minimum
energy, called a ground state or vacuum, is a field φ0 such that

∂1φ0 = ∂0φ0 = 0, U(φ0) = U0. (2.6)

2It is conventional to assume that U0 = 0 so that E ≥ 0. If U0 6= 0 we can just add the constant U0 to
Eq. (2.2) so that E ≥ 0.
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That is a ground state is a field configuration that is static, spatially constant, and a minimum
of the potential. The set of such ground states is sometimes called the vacuum manifold

V = {φ |U(φ) = 0}. (2.7)

We are now ready to treat the two examples.

1. φ4: In the φ4 model the potential is taken to be

U(φ) =
λ

2

(
φ2 − a2

)2
(2.8)

with λ the positive coupling constant and a related to the conventional mass parameter
µ through a2 = µ2

λ
, and φ : R → R a real scalar field. This potential has two zeros at

φ = ±a as can be seen in Fig. 1. Another way to say this is that the vacuum manifold is

V = {−a, a}. (2.9)
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Figure 1: A plot of the potential term in the φ4 model, Eq. (2.8) for a = 1, λ = 4.

2. Sine-Gordon: The potential term for the Sine-Gordon model is

U(φ) =
α

β2
(1− cos (βφ)) (2.10)

with α, β ∈ R and β > 0. The cos term is 2π
β

periodic so the vacuum manifold is

V = {φ =
2π

β
k |k ∈ Z}. (2.11)

The Sine-Gordon potential is plotted in Fig. 2. Focusing on the ground state at φ = 0
and expanding the potential around it we find

U(φ)|φ=0 '
α

2
φ2 − αβ2

4!
φ4 + . . . (2.12)

which looks like a φ4 term with λ ∼ αβ2 and µ2 ∼ α.

3



-2 π -π 0 π 2 π

0.0

0.1

0.2

0.3

0.4

0.5

ϕ

U
(ϕ

)

Figure 2: A plot of the potential term in the Sine-Gordon model, Eq. (2.10) for α = 1, β = 2.

To find static solutions3 in either model we consider

δV = δ

∫
dx

[
1

2
(∂1φ)2 + U(φ)

]
= 0, (2.13)

subject to
lim

x→±∞
φ(x) ∈ V . (2.14)

The condition that φ tends to the vacuum manifold asymptotically is there to ensure that the
solution has finite energy.

First we note that if V is just a point, there is only one ground state, then the only solution is
the constant ground state.

If V has more elements then there exist non-trivial static solutions interpolating between neigh-
bouring elements of V . Spelling this out in more detail there are solutions φ(x) which are
monotonic from φ(−∞) = φ− to φ(∞) = φ+ for

V = {. . . , φ−, φ+, . . . }. (2.15)

In [Col88] there is a nice analogy between the field theory and the motion of a particle in one
dimension subject to a potential with multiple minima.

If φ is monotonically increasing, φ− < φ+ then the solution is a soliton. While if φ is monoton-
ically decreasing, φ− > φ+ then the solution is an antisoliton.

Before we start to construct explicit soliton configurations it is a good time to stop and check
where the topology comes in to this. There is a correspondence between the boundary data
and the solution, that is (φ+, φ−) ∈ V × V classifies the configuration. When φ+ = φ− the
configuration can be continuously deformed to the ground state φ+, while for φ+ 6= φ− the
configuration φ cannot be deformed to a ground state configuration in V . This is because

3That is solutions such that ∂0φ = 0.
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the space of non-singular field configurations has several disconnected components labelled by
φ+ × φ−.

Example 2.1. Consider φ4 theory. V = {−a, a} so the possible boundary configurations are
(−a,−a), (−a, a), (a, a), (a,−a). These are the four connected components of the space of
finite energy field configurations.

• (−a,−a) is equivalent to the constant φ = −a.

• (−a, a) the field configuration is a soliton.

• (a,−a) the field configuration is an antisoliton.

• (a, a) is equivalent to the constant φ = a.

We distinguish between the configurations using the integer

N =
1

2a

∫ ∞
−∞

dx
dφ

dx
=
φ+ − φ−

2a
∈ Z (2.16)

known as the topological charge as it tells us which connected component the field configuration
is in.

We can generalise this analysis to see that the asymptotic data (φ+, φ−) labels the connected
component of the space of finite energy field configurations that we are considering. The
topology of the soliton comes from the topology of the vacuum manifold4 through π0(V).

Exercise 2.2. Consider the Sine-Gordon model, what are the connected components of V?
Knowing the connected components how can we assign an integer to the field configurations?

Considering the static energy Eq. (2.4) it is a straightforward completing the square computa-
tion to see that

E =

∫ ∞
−∞

dx

[
1

2

(
∂1φ∓

√
2U(φ)

)2

±
√

2U(φ)
dφ

dx

]
≥
∣∣∣∣∫ φ+

φ−

dφ
√

2U(φ)

∣∣∣∣ . (2.17)

To justify this bound it is instructive to expand the squared to term,

1

2

(
∂1φ∓

√
2U(φ)

)2

=
1

2

[
(∂1φ)2 ∓ 2∂1φ

√
2U(φ) + 2U(φ)

]
,

=
1

2
(∂1φ)2 + U(φ)∓ dφ

dx

√
2U(φ).

(2.18)

This is 1 + 1D energy density from Eq. (2.2) with the addition of ∓dφ
dx

√
2U(φ), the negative of

the term added in Eq. (2.17). If U(φ) is bounded then we can find a “superpotential” W (φ)
such that

U(φ) =
1

2

(
dW

dφ

)2

(2.19)

4The space of finite energy, non-singular field configurations, often called the configuration space C, also
has non-trivial topology as it is not connected. As was said above these configurations are classified by their
asymptotic values, which are in V, which is why we focus on the topology of V.
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and the bound, known as the Bogomol’nyi bound, becomes

E ≥ |W (φ+)−W (φ−)|. (2.20)

As we are interested in the minima, at least the minima within a given topological sector,
we want to construct configurations which saturate this Bogomol’nyi bound. Thus we do not
need to solve the full second order equations of motion, Eq. (2.5), but can solve the first order
Bogomol’nyi equations

∂1φ∓
√

2U(φ) = 0, (2.21)

which imply the second order equations of motion.

These Bogomol’nyi equations can be solved by quadratures to find

x− x0 = ±
∫ φ

φ0

dϕ√
2U(ϕ)

, (2.22)

where x0 is the centre of the soliton such that φ(x0) = φ0 is an arbitrary point between φ− and
φ+.

Example 2.3. Considering the φ4 model the potential is given by (2.8). Choosing the asymp-
totics φ± = ±a enables us to write Eq. (2.22) as

x = ± 1

µ

∫ φ

0

dϕ
ϕ2

a2
− 1

= ∓ 1

µ
arctanh

(
φ

a

)
. (2.23)

Inverting this we have that the φ4 kink is

φ(x) = a tanh (µx) , (2.24)

taking the negative sign gives the anti-kink. The φ4 kink solution is plotted in Fig. 3.
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Figure 3: A plot of the kink solution in the φ4 model, Eq. (2.24) for a = 1, µ = 4.
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Exercise 2.4. Working with the static energy for the Sine-Gordon model solve the Bogomol’nyi
equations to show that the Sine-Gordon kink is given by

φ(x) =
4

β
arctan

(
exp

(√
αx
))
. (2.25)

Next show that the energy of the kink is

E|kink =
8
√
α

β2
. (2.26)

The Sine-Gordon kink is plotted in Fig. 4
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Figure 4: A plot of the kink solution in the Sine-Gordon model, Eq. (2.25) for α = 1, β = 2.

2.3 Derrick’s Theorem and solitons in higher dimensions

For theories in spatial dimensions greater than one it is more complicated to construct static
soliton solutions. This is in part because of the following Theorem.

Theorem 2.5 (Derrick’s Theorem [Der64]). Consider a vector, φ, constructed from n−scalar
fields in 1 +D dimensions,

φ : M1+D → Nn. (2.27)

Assume that the dynamics of the fields is governed by

L =
1

2
∂µφ · ∂µφ− U(φ), (2.28)

with U non-negative and bounded below5. Then for D > 2 the only non-singular, finite energy,
static solutions are elements of V, the ground states.

5We saw above that as long as U is bounded we can always add a constant so that it is non-negative
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This is proved using a scaling argument.

Proof. Define

V1 =
1

2

∫
dDx (∇φ)2 , (2.29)

V2 =

∫
dDxU(φ). (2.30)

The Vi are non-negative and bounded below by zero. Next given a static solution φ(x) we can
define the scaled solution

φλ(~x) ≡ φ(λ~x), λ ∈ R+. (2.31)

The potential energy of the scaled solution is

Vλ = λ2−DV1 + λ−DV2. (2.32)

By assumption φ(x) is a minimum of the energy, thus it is a minimum with respect to scaling:

dVλ
dλ

∣∣∣∣
λ=1

= − [(D − 2)V1 +DV2]
!

= 0. (2.33)

Unpacking this statement we have that for D > 2, as the Vi are bounded below by zero, the
solution is V1 = V2 = 0.

We can also say something when D = 2. The same logic as above implies that V2 = 0. However,
V1 is now scale invariant so non-trivial scale invariant solutions, such as the lumps in the O(3)
sigma model that we will meet later, are possible.

Another way to state the proof of Derrick’s Theorem is that the scaled potential , Vλ is mono-
tonically decreasing as λ increases and thus has no stationary points.

There are several ways to circumvent Derrick’s theorem they include: Adding higher order
terms to the energy functional, such as the skyrme term in two and three dimensions. Adding
a term which is not bounded below , such as the Dyaloshinskii-Moriya term that we will
encounter later. Explicitly constructing time dependent solutions. Finally coupling to a gauge
field gives another means of subverting the assumptions of the theorem. Many of the most
famous examples of topological solitons are obtained in gauge theories. These include, vortices,
magnetic monopoles, and instantons.

2.4 Stability of one dimensional solitons

When we constructed our soliton solutions in the φ4 and Sine-Gordon models, Eqs. (2.24) and
(2.25) we did not show that they were stable with respect to small perturbations. This is again
a topic that is treated in detail in [Col88]. The equation of motion coming from the Lagrange
density in Eq. (2.1) is

�2φ+
dU(φ)

dφ
= 0 (2.34)
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as we saw in Eq. (2.5). Consider a field configuration which includes fluctuations, δ(x, t), around
a static solution6, f(x), of the equations of motion

φ(x, t) = f(x) + δ(x, t), (2.35)

inserting this into Eq. (2.34) and working to linear order in δ we find

�2δ(x, t) +
d2U(f)

dx2
δ = 0. (2.36)

As this equation is invariant under time translations a solution can be written as a sum of
normal modes in the following way

δ(x, t) = <

[∑
n

ane
iωntψn(x)

]
, (2.37)

where < means taking the real part, the a’s are the arbitrary complex coefficients, and ωn, ψn
solve the Schrödinger equation

− d2ψ2

dx2
+
d2U(f)

dx2
ψn = ω2

nψn. (2.38)

The solutions are stable if and only if the eigenvalues are all positive, ω2
n ≥ 0 ∀n. We now

demonstrate that this is the case. The easiest solution to Eq. (2.38) is ψ0 = df
dx

with eigenvalue
ω0 = 0. Now since f is monotone the function ψ0 has no nodes. Finally we just need to use the
well known result that for a one-dimensional Schrödinger equation with an arbitrary potential
the lowest energy eigenfunction is the one with no nodes [MF53]. This means that ψ0 is the
lowest energy solution of Eq. (2.38) and thus ωn ≥ 0∀n as we required.

In the language of quantum mechanics we have expanded in quantum fluctuations around the
background of the soliton. The existence of classical solutions which are not in V leads to
interesting and non-trivial backgrounds to do quantum mechanics around.

Exercise 2.6. Considering the Sine-Gordon model with soliton solution given in Eq. (2.25)
construct the Schrödinger equation of Eq. (2.38). First find the zero-mode, ψ0 with eigenvalue
zero, then construct the continuum of scattering states with ω2

n > 0.

2.5 Topological degree

This section is just a brief summary of some of the key ideas, for more detail I refer the readers
to [MS04, Dun10]. The particular expressions for the topological charge that I use will be
introduced when they are needed.

We have seen a quantity called the topological charge show up in both the φ4 and the Sine-
Gordon model. In these one dimensional models the topology was due to the connected com-
ponents of V , given by π0(V).

6Even though we are perturbing around a static solution we consider time dependent perturbations.
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In higher dimensions the topology arises from the higher homotopy groups of V , the target
space, or in the case of gauge theories from the Chern numbers of the gauge bundle. The full
story is explained in [MS04] and [Dun10] and I will only discuss the degree expressions that I
need to use.

The basic story is that a field configuration can be viewed as a map between the domain, X,
and the target space7 Y , with dimX = dimY . Now a map φ : X → Y between topological
spaces lifts to a map of cohomology groups8 [Hat00]

φ? : H i (Y )→ H i (X) . (2.39)

The degree is then defined in terms of a normalised9 volume form ΩY on Y as

degφ =

∫
X

φ∗ (ΩY ) ∈ Z. (2.40)

I do not prove here that the degree is an integer but the proof is given in both [MS04] and
[Dun10].

The most common examples are when φ : Sn → Sn, in this setting the degree is often called
the winding number.

Example 2.7. A good example to have in mind, taken straight from [MS04], is when X '
Y ' S1. The normalised volume form on S1 is ΩS1 = 1

2π
dθ and Eq. (2.40) reduces to

degφ =
1

2π

∫ 2π

0

dφ

dθ
dθ =

1

2π
(φ(2π)− φ(0)) , (2.41)

which is a measure of how many times φ goes around the target circle while going around the
domain once.

Another way to compute the degree is in terms of a signed count of the preimages of a regular
value, again we refer to [MS04] for the details.

2.6 Higher dimensional examples

Before moving on to the specific examples that we want to study in detail let us take the
opportunity to showcase several examples of topological solitons in dimension two and three.

1. On R2 consider U(1) gauge theory with a single complex scalar field10 The potential is
taken to be

U(φ) =
λ

2

(
|φ|2 − a2

)2
(2.42)

7We also need both the domain and the target to be compact so that the integral of the volume form is well
defined.

8Readers familiar with the concept of topological degree will notice that I am being rather relaxed in my
discussion of it. For one thing it can be defined in terms of the lift of φ to a map of homotopy groups, however,
this definition is less useful for computations so I focus on the cohomological interpretation.

9Normalised here means that
∫
Y

ΩY = 1 so we are restricted to finite volume manifolds such as spheres. The
conventional setting is that of closed manifolds and proper maps as explained in [MS04].

10This theory is sometimes called scalar QED and sometimes called the Abelian-Higgs model.
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resulting in the vacuum manifold being

V = {φ = aeiσ|σ ∈ R} ' S1. (2.43)

In this case the topology arises from the space of maps S1 → S1 with π1(S1) = Z. The
S1 on the left is the boundary circle of infinite radius within R2. The winding number is
computed from

n =

∫ 2π

0

dσ

2π
=

∫ 2π

0

dθ

2π

dσ

dθ
=

1

2π

∮
d lnφ. (2.44)

This gives a model of the vortices in type II superconductors with the magnetic flux
related to the winding number as Φ = 2πn

e
.

2. The next example is on R3 with φ an isotensor, a real 3 × 3 symmetric matrix. We will
not give the explicit expression for U(φ) but will assume that the vacuum manifold has
the form11

V = {φ = 2aeeT − a
(
I− eeT

)
|a ∈ R, e2 = 1}. (2.45)

Here e is a real eigenvector of φ with eigenvalue 2a. The other two eigenvalues of φ will
be orthogonal to e with eigenvalue −a. As e ∈ S2 and e and −e have the same eigenvalue
the vacuum manifold from Eq. (2.45) is the real projective plane

V ' RP 2. (2.46)

The relevant homotopy group is π1 (RP 2) = Z2 which leads to configurations with non-
trivial topology.

Several other examples of models with and without topology are given in [Col88]. At this point
it is worth noting what happens when we are considering a gauge theory, such as in the first
example above, this involves a brief discussion of spontaneous symmetry breaking. Up to a
gauge transformation the ground states are configurations where the gauge field vanishes and
the scalar field is a constant such that U = 0. For a ground state, φ = φ0, the unbroken part of
the gauge group is H ⊂ G such that hφ0 = φ0 ∀h ∈ H. As the potential U is G invariant when
φ0 is a zero of the potential gφ0 will also be a zero ∀g ∈ G. If we assume that all zeros of U can
be written in this way, see [Col88] for a justification, then the vacuum manifold is isomorphic
to G/H.

Exercise 2.8. Considering the two examples above what are the groups G and H?

3 Solitons in chiral magnets

3.1 The O(3) sigma model

The next type of topological solitons that we encounter are solitons in chiral magnets. Chiral
magnets are described by an energy functional which is a version of a non-linear sigma model.

11Such a potential will be expressible as U(φ) = α tr
(
φ2
)

+ β tr
(
φ3
)

+ γ tr
(
φ4
)
.
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Here we focus on the static energy of the models and hold off on any discussions about time
dependence. The field in the model is the magnetisation vector field of a magnetic material,
m : R2 → S2, in other words m is a normalised three component vector. The energy functional
consists of three pieces12, the Dirichlet term

ED[m] =
1

2

∫
R2

d2x (∇m)2 , (3.1)

the potential term

Epotential[m] =

∫
R2

d2xU(m), (3.2)

and the axially symmetric Dzyaloshinskii-Moria term13

DM [m] = κ

∫
R2

d2xm · (∇×m) . (3.3)

Just considering the Dirichlet term, Eq. (3.1), we have the pure O(3) sigma model. A detailed
discussion of O(3) sigma model and the lump solutions see [MS04]. In this case finite energy
solutions extend to maps m : S2 → S2 and have a well defined topological degree

Q[m] =
1

4π

∫
d2x (m · ∂1m× ∂2m) . (3.4)

The energy can be rewritten as

E[m] =
1

2

∫
R2

d2x (∂1m±m× ∂2m)2 + 2π |Q[m]| ≥ 2π |Q[m]| (3.5)

The solutions of the Bogomol’nyi equations,

∂1m±m× ∂2m = 0, (3.6)

saturate the bound and are global minimisers of the energy in a given topological sector.

Exactly what sort of functions solve the Bogomol’nyi equations is most obvious in terms of a
stereographic coordinate14,

w =
m1 + im2

1 +m3

. (3.7)

Here the Bogomol’nyi equations become

∂zw = 0 or ∂z̄w = 0 (3.8)

and are solved in terms of based rational maps, that is rational maps which tend to a constant
at infinity.

12Sometimes a fourth term, a Lagrange multiplier enforcing the constraint m2 = 1, will be included,
Econstraint =

∫
R2 d

2xλ
(
1−m2

)
. Here we will rarely include the constraint explicitly.

13As we shall see later the most general axially symmetric DM term involves a rotated gradient ∇−α where
α ∈ [0, 2π) leading to a family of models. The choice of α = 0 (or α = 2π) is called a Bloch DM term. The
unified way of writing this family of models was given in [BSRS20].

14The inverse stereographic relations are m1 + im2 = 2w
1+|w|2 and m3 = 1−|w|2

1+|w|2 .
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Exercise 3.1. Working in the stereographic coordinates of Eq. (3.7) check that the BPS equa-
tions have the form of Eq. (3.8).

Examples of some of these solutions are given in Fig. 5

Figure 5: Plots of the energy density and the magnetisation for several choices of rational map.
First w = z, next w = z2, then w = (z − 1)(z + 1), and finally w = z4. As these are solutions
of the Bogomol’nyi equations the energy density is the same as the topological charge density.

Before giving more details we focus briefly on the symmetries of the model. The name O(3)
sigma model15 comes from the O(3) global symmetry of the target S2. As stated above for the
energy to be finite the field needs to tend to a constant at infinity. The constant can be picked
without loss of generality to be

lim
r→∞

m(r) = e3 =

0
0
1

 . (3.9)

This boundary condition breaks the O(3) symmetry down to the O(2) symmetry preserving e3.
Since the base space has been compactified to S2 = R2∪{∞} there are now two O(2) symmetries
one for the base and one for the target. These are sometimes referred to as rotations and
isorotations respectively16. Introducing either the potential term, Eq. (3.2), or the DM term,
Eq. (3.3), has the potential to break this symmetry further. In fact the DM term is not invariant
under rotations and isorotations separately but only the diagonal subgroup. It is also breaks
the parity symmetry and because of this we refer to the model as chiral17.

3.2 Derrick’s Theorem for chiral magnets

At this point the extra terms that we pal on including, the DM term of Eq. (3.3) and the
potential of Eq. (3.2), may make us start to worry about finding non-trivial solutions. In fact

15The sigma part of the name is because the model is frequently written in terms of the three fields (φ1, φ2, σ)
where σ =

√
1− φ21 − φ22.

16The energy functional is also invariant under translations in the plane
17The version of the DM term with the opposite chirality is

∫
R2 d

2x m̄ ·(∇× m̄), where m̄ =
(
m1,−m2,m3

)T
,

which is invariant under the anti-diagonal subgroup [BSRS20].
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as we are working in dimension two Derrick’s Theorem would suggest that we cannot find any.
To see how this is circumvented let us start by considering a scaled version of a static solution
mλ(x, y) ≡ m (λx, λy) for λ ∈ R+. The scaled energy functional is

Eλ = ED[m] + λDM [m] + λ2Epotential, (3.10)

with critical points solving

dEλ
dλ

∣∣∣∣
λ=1

= − (DM [m] + 2Epotential) = 0. (3.11)

Now this equation has solutions when the DM term is negative. This means that adding a
term which not bounded below gives a method of circumventing Derrick’s theorem and finding
non-trivial solutions to the equations of motion. This is precisely what we turn our attention
to now.

Exercise 3.2. Fill in the gaps in the Derrick scaling argument.

3.3 Magnetic Skyrmions model

The theoretical model of magnetic skyrmions were first introduced By Bogdanov and collabora-
tors in [BH94, BY89]. Experimental and theoretical studies of magnetic skyrmions are reviewed
in [NT13].

3.3.1 The vacuum manifold

Moving now to considering chiral magnets we include the DM term and potential, Eqs. (3.2)
and (3.3) in the energy. As part of this we specify the type of potential term that we work
with and explore the structure of its vacuum manifold V . As we are considering a magnetic
material the first kind of term that can appear in the potential is a Zeeman term measuring
the response of m to an external magnetic field ~B, conventionally we align the external field
with the 3-axis and take

~B =

 0
0
B

 . (3.12)

The Zeeman term18 is thus
UZ(m) = −Bm3, (3.13)

this term is minimised when m is aligned with ~B, in this case when

m3 =

 0
0
B
|B|

 . (3.14)

18A more general Zeeman term is ~B · m. We are interested in a two dimensional model with everything
independent of the third direction. This makes it convenient to align the magnetic field with the symmetry axis
of the material.
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The next type of term that can appear in the potential is an anisotropy term which describes
an asymmetry in the model. We are interested in the case of anisotropy in the third direction
and the corresponding term in the potential is

UA(m) = Am2
3. (3.15)

Depending on the sign of A this leads to different minima: When A is positive the potential is
minimised by m3 = 0, so the magnetisation lies in the x-y plane and the anisotropy is referred
to as being easy plane. When A is negative Eq. (3.15) is minimised by m3 = ±1 and the
anisotropy is refereed to as being easy axis.

Putting all of this together the energy functional is

E[m] =

∫
R2

d2x

[
1

2
(∇m)2 + κm · (∇×m) + Am2

3 −Bm3

]
. (3.16)

This energy functional is invariant under B → −B, m→ −m so we can restrict our attention
to B ≥ 0. Finally it is convenient to add B − A as a constant to the potential so that the
energy functional takes the form

E[m] =

∫
R2

d2x

[
1

2
(∇m)2 + κm · (∇×m)− A

(
1− m2

3

)
+B (1−m3)

]
. (3.17)

The vacuum manifold is given

V = {m| − A
(
1− m2

3

)
+B (1−m3) = 0}, (3.18)

Depending on the values of A and B this takes different forms. When B > 2A it is the single
point VB>2A = {m = e3} and when B < 2A it is the circle

VB<2A =

{
m3 =

B

2A
, (m1)2 + (m2)2 = 1− B2

4A2

}
' S1. (3.19)

How the vacuum manifolds relate to the target S2 are plotted in Fig. 6.

Figure 6: Plots of the vacuum manifold in red on the target S2. On the left is B >
2A with the vacuum manifold VB>2A = {m = e3}, in the middle is B < 2A with

VB<2A =
{
m3 = B

2A
, (m1)2 + (m2)2 = 1− B2

4A2

}
, and on the right is B = 0 with VB=0 ={

m3 = 0, (m1)2 + (m2)2 = 1
}

the circle at the equator.

Exercise 3.3. By minimising the potential check that these are the vacuum manifolds that
you find.
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3.3.2 Hedgehogs and symmetries of the model

Before discussing one approach to constructing skyrmion solutions it is convenient to mention
the symmetries of the model in Eq. (3.17). It is invariant under translations in the x− y-plane
and under the O(2) subgroup which acts through rotations and reflections as

m(x, y) 7→ R(σ)m (cosσ x− sinσ y, sinσ x+ cosσ y) , σ ∈ [0, 2π), (3.20)

m(x, y) 7→ R(2γ)m̄(x,−y), with γ =
π

2
− α, (3.21)

with R(σ) a rotation about the third direction given by

R(σ) =

cosσ sinσ 0
sinσ cosσ

0 0 1

 (3.22)

and

m̄ =

 m1

−m2

m3

 . (3.23)

This is the group of rotations and reflections in the x − y plane combined with simultaneous
rotation and reflection of the target sphere. For nuclear and baby skyrmions the rotations and
reflections of the target space are called isorotations and isoreflections. It is the DM term which
breaks the product group O(2)×O(2) down to the diagonal subgroup.

When looking for solutions it is convenient to write the magentisation in terms of spherical
polar coordinates as

m =

sin Θ cos Φ
sin Θ sin Φ

cos Θ

 (3.24)

with Θ and Φ functions on the plane. Such a solution is invariant under the O(2) symmetry
group of the model when Θ = Θ(r) and Φ = ϕ+ γ with (r, ϕ) the plane polar coordinates and
γ = π

2
− α. Such an expression is called a hedgehog field19. Taking the boundary conditions

that
Θ(0) = π, and Θ(∞) = 0, (3.25)

gives a hedgehog field with Q = −1.

Exercise 3.4. Using Eq. (3.4) compute the degree of a hedgehog field configuration satisfying
the boundary conditions in Eq. (3.25).

Assuming that the fields tend to V as ~x → ∞ enables us to add the point at infinity and
work with the domain R2 ∪ {∞} = S2. For the O(3) sigma model this condition ensures finite
energy of the solutions. This means that field configurations will be maps m : S2 → S2 with

19Taking Φ = nϕ+ γ would lead to a configuration with Q = −n. However, these are unstable configurations
[FKA+19]
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a well defined topological degree given by Eq. (3.4). When we discuss the critically coupled
model we will encounter some skyrmion configurations for which m does not extend to a map
between spheres. For these configurations the integral in Eq. (3.4) will not have its topological
interpretation. However, it can still be evaluated and is found to still be an integer. One way
to avoid this complication is to redefine the energy functional to remove a boundary term. We
will comment on this more thoroughly in a later section as there are analytic reasons to make
this redefinition.

For hedgehog fields the energy functional becomes

E = 2π

∫ ∞
0

rdr

(
1

2

(
dΘ

dr

)2

+
sin2 Θ

2r2
+ κ

(
dΘ

dr
+

sin (2Θ)

2r

)
+B (1− cos Θ)− A

(
1− cos2 Θ

))
(3.26)

with the equation of motion

d2Θ

dr2
= −1

r

dΘ

dr
+

sin (2Θ)

2r2
− 2κ

sin2 Θ

r
+B sin Θ− A sin (2Θ) . (3.27)

In the region B ≥ 2A this can be solved numerically to find Q = −1 configurations. Examples of
some of these numerical solutions, including non reflection invariant conditions with γ 6= π

2
−α,

are given in [FKA+19] and three examples are plotted below in Fig. 9. Depending on the
specifics of the DM term, the value of α, the skyrmions are either of Bloch or Néel type. A
schematic of the magnetisation vector field of a skyrmion is given in Fig. 7.

Figure 7: Illustrative Mathematica plots of the axially-symmetric Bloch and Néel skyrmion.

3.4 The solvable line

In the O(3) sigma model we were able to explicitly construct solutions by finding and solving
first order Bogomol’nyi equations. It turns out that something similar can be done for the more
general model in Eq. (3.17) when B = 2A. To describe this in detail we start by assuming the
magnetisation takes the form of the hedgehog ansatz in Eq. (3.24). The equation of motion,
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Eq. (3.27), becomes

d2Θ

dr2
= −1

r

dΘ

dr
+

sin (2Θ)

2r2
− 2κ

sin2 Θ

r
+B sin Θ (1− cos Θ) . (3.28)

Written in terms of the hedgehog ansatz the O(3) Bogomol’nyi equations, Eq. (3.6), are

dΘ

dr
+

sin Θ

r
= 0, (3.29)

which is solved, along with the boundary conditions from Eq. (3.25), by

Θ = 2 arctan

(
2

λr

)
, λ ∈ R. (3.30)

Taking the r derivative of Eq. (3.29) gives

d2Θ

dr2
= −1

r

dΘ

dr
+

sin (2Θ)

2r2
. (3.31)

This is nothing but the first three terms from the equation of motion, Eq. (3.28). Thus we find
that the profile function in Eq. (3.30) will solve the equations of motion for λ = B

κ
.

Exercise 3.5. Show that the hedgehog profile function, Eq. (3.29) solves the equations of
motion Eq. (3.28).

Examples of these hedgehog configurations are given in Fig. 8.

Figure 8: Mathematica plots of the hedgehog configurations for B = κ2, B = 2κ2, and B = 4κ2.
These are all plots of the Bloch configurations with α = 0 and γ = π

2
. The size of the skyrmion

is decreasing with increasing B.

At the level of the energy functional the DM and potential terms cancel point wise

mB ·
(
∇×mB

)
=
B

2

(
1−mB

3

)2
, (3.32)
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where mB is the hedgehog configuration corresponding to the profile function

Θ = 2 arctan

(
2κ

Br

)
. (3.33)

The energy is thus given purely by the Dirichlet term, Eq. (3.1), which satisfies the Bogomol’nyi
energy bound, Eq. (3.5). The hedgehog configurations then have energy

E[mB] = 4π. (3.34)

For the topological solitons that we encountered in the previous section, φ4 and sine-Gordon
kinks, there is an infinite energy barrier protecting the skyrmion from decaying to the vacuum.
For magnetic skyrmions this is not the case, by changing γ we can find skyrmion configurations
with energy 4π and zero size, see Fig. 9. Thus the energy barrier is finite in this case! This
causes some people to refer to magnetic skyrmions as “non topological” solitons.

Figure 9: Mathematica plots of the hedgehog configurations for B = κ2, α = 0 and varying
γ. The size of the skyrmion is decreasing with decreasing γ. On the left γ = π

4
, in the middle

γ = π
8
, and on the right γ = 0.

3.5 The critically coupled model

Specialising the model even more results in a gauged version of the O(3) sigma model that
we met earlier. The key observation to realise this is that a term in the energy which is first
order in derivatives can be reinterpreted as a gauge field. This means that there are a lot of
similarities between magnetic skyrmions and sigma model lumps. Spelling this out is what we
now turn to. The critically coupled model was first introduced in [BSRS20] and involves fine
tuning the potential to be B = κ2. The energy functional for the critically coupled model is

Ecc[m] =

∫
R2

d2x

[
1

2
|∇m|2 + κm · (∇−α ×m) +

κ2

2
(1−m3)2

]
(3.35)

Introducing the covariant derivative, also known as the helical derivative,

Dim = ∂im− κei ×m, (3.36)
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with the gauge potential and field strength being

Ai = −iκei, (3.37)

F12 = κ2e3, (3.38)

leads to a convenient rewriting of the model. Two useful identities, the second of which was
first observed in [Hoo74], are

(D1m+m×D2m)2 = (D1m)2 + (D2m)2 − 2 (D1m×D2m) ·m, (3.39)

(D1m×D2m) ·m−m · F12 = (∂1m× ∂2m) ·m+ ∂2 (m · A1)− ∂1 (m · A2) . (3.40)

Making use of these we have the following result about the critically coupled model [BSRS20].

Lemma 3.6. The energy of the critically coupled model can be written as

E[m] = 4π (Q[m] + Ω[m]) +

∫
d2x (D1m+m×D2m)2 , (3.41)

where Ω[m], called the total vortex strength, is

Ω[m] =
κ

4π

∫
d2x e3 · (∇−αm×m) (3.42)

Equality holds if and only if the Bogomol’nyi equations

D1m+m×D2m = 0 (3.43)

is satisfied.

The vortex strength term gets its name because e3 · (∇−αm×m) is the vorticity of the first
two components, m1,m2. Stokes’ theorem tells us that it is a boundary term, as

e3 · (∇−αm×m) dx ∧ dy = κd (mα
1dx+mα

2dy) . (3.44)

There are some problematic configurations for which Ω[m] is not defined and it is necessary to
regularised it as

Ω◦[m] =
1

4π
lim
R→∞

∫
CR

κd (mα
1dx+mα

2dy) , (3.45)

with CR the circle of radius R. As we will comment on later the boundary term issues can be
circumvented by starting from a modified energy functional where the boundary piece has been
subtracted off. This modified setting is discussed in detail in [Sch19a, Sch19b], in [Wal20] the
combination Q[m] + Ω[m] was interpreted as the equivariant degree if m. Here we are most
interested in showcasing some of the interesting configurations so we put off discussion of the
boundary term.

The proof of the result is by direct computation and filling in the details is left as an exercise
for the reader.

One of the key differences between this gauged model and the ordinary, ungauged, O(3) sigma
model is that the energy bound is in terms of the degree Q[m] rather than the modulus of the
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degree. When we meet the solutions of the Bogomol’nyi equations we will see that the lowest
degree solution is the Q = −1 skyrmion with energy 4π and that all other solutions have higher
Q.

As in the case of the O(3) sigma model the easiest way to understand the solutions is to use
complex stereographic coordinates of Eq. (3.7), in particular the inverse coordinates v = 1

w
. In

these coordinates the degree and total vortex strength become

Q[w] =
i

2π

∫
d2x

∂1w∂2w̄ − ∂2w∂1w̄

(1 + |w|2)2 , (3.46)

Ω[w] =
κ

π

∫
d2x Im

(
eiα

∂zw − w2∂zw̄

(1 + |w|2)2

)
. (3.47)

The energy bound is then

E[w] = 4π (Q[w] + Ω[w]) + 8

∫
d2x
|∂z̄w − i

2
κeiαw2|2

(1 + |w|2)2 , (3.48)

with the Bogomol’nyi equations written in terms of v = 1
w

as

∂z̄v = − i
2
κeiα. (3.49)

The general solution to these Bogomol’nyi equations is given by

v = − i
2
κeiαz̄ + f(z), (3.50)

with f an arbitrary holomorphic function.

For f(z) = p(z)
q(z)

with p and q polynomials in z of degree m and n with no common factors, we
can prove a nice result about the energy.

Lemma 3.7. For a skyrmion configuration given by

v = − i
2
κeiαz̄ +

p(z)

q(z)
, (3.51)

with p and q polynomials of degree m and n respectively, the integral defining the total energy
is well defined provided m 6= n+ 1. The energy is

E[w] = 4πmax (m,n+ 1) if m 6= n+ 1. (3.52)

When m = n+ 1 the total energy is not well defined but the regularised total energy is

E[w] = 4π
(
Q[w] + Ω0[w]

)
= 4πm (3.53)

Rational configurations are our main focus so we set

N = max (m,n+ 1) . (3.54)

For interested readers the proof of this result is in [BSRS20].
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Figure 10: Left to right: Magnetisation plot of a Bloch skyrmion and a Néel skyrmion.

3.5.1 A zoo of skyrmions

There are many easy to construct examples of solutions to the Bogomol’nyi equations. In this
section we showcase this zoo of skyrmion anti-skyrmion configurations starting with the E = 4π
sector and going up in multiples of 4π.

N=1 There is a four dimensional family of solutions

v1 = − i
2
κeiα (z̄ + az) + b, a, b ∈ C. (3.55)

Translations and rotations fix everything except from |a|. Changing |a| corresponds to a stretch-
ing or squeezing of the energy density. The simplest example is a = b = 0, with α = 0 this
is called the Bloch skyrmion and with α = π

2
this is a Néel skyrmion. These are plotted in

Fig. 10.

The stretching and squeezing effect is shown in Fig. 11. Keeping |a| fixed and changing the
phase of a leads to rotations of the energy density. As shown in Fig 12 the energy density
rotates by half the angle that a changes by.

Another interesting feature is that changing |a| changes the degree. When |a| > 1
2
, Q = 1

and the solutions is an anti-skyrmions as shown in Fig. 13. This means that by increasing |a|
through the problematic value of |a| = 1

2
a skyrmion can be turned in to and anti-skyrmion.

Within the family of solutions with regularised energy 4π configurations with |a| = 1
2
, such as

v = − i
2
eiα
(
z̄ + eiδz

)
(3.56)

are particularly interesting. These solutions have a whole line where m3 = −1, ϕ = − δ
2
± π,

and are examples of solutions which do not extend to maps of spheres.
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Figure 11: Stretching and squeezing for the configuration v = − i
2
z̄+az with a = 0.3 (top left),

a = 0.4 (top right), a = 0.5 (bottom left) and a = 0.7 (bottom right).

Figure 12: Rotation of the energy density of v = − i
2
z̄ + az when |a| > 1

2
: a = 1 (top left),

a = ei
π
2 (top right), a = eiπ (bottom left) and a = ei

3π
2 (bottom right).
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Figure 13: For v = − i
2
z̄ + 3iz the magnetisation rotates oppositely to that of the Bloch

skyrmion.

Figure 14: Left to right: magnetisation plot and energy density plot for the solution v =
− i

2
(z̄ − z)
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Figure 15: Magnetisation and energy density for v = − i
2
z̄ + 1

2
z2. This is an example of a

configuration involving a skyrmion and three anti-skyrmions.

For these configurations the energy density is peaked long the line as shown in Fig. 14. These
configurations are lost if we work with the modified energy of [Sch19b, Sch19a] and are one of
the reasons we need to work with the regularised energy.

N=2 Moving to the next energy sector there is an eight dimensional family of solutions

v = − i
2
κeiαz̄ +

az2 + bz + c

dz + e
, (3.57)

with a, b, c, d, e ∈ C, and (a, b, c, d, e) ∼ λ(a, b, c, d, e), λ ∈ C∗.

In this family we find solutions which are a combination of skyrmions and anti-skyrmions.
Examples of some of these solutions are in Figs. 15 and 16

An interesting feature that arises at E = 8π are the Q = 0 skyrmion bags or sacks, which have
been seen numerically in the full model by [FKA+19, RK19]. In the critically coupled model
these configurations arise when

v = − i
2
κeiα

(
z̄ − R2

z

)
with R ∈ R>0. (3.58)

Plotting the magnetisation vector field of these configurations show that they have a circle
of south poles at R, the radius of the bag, with vacuum, m = e3 in the centre. These bags
are some of the most symmetric solutions as, like the basic holomorphic solution, they are
invariant under spin-isospin rotations. An example of a bag configuration is given in Fig. 17.
As these configurations have Q = 0 they are non-topological soliton configurations, even when
the alternative energy functional is used.
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Figure 16: Magnetisation and energy density for v = − i
2
z̄ + 2z2 + 7z + 5. There are two

anti-skyrmions.

Figure 17: Magnetisation and energy density for the skyrmion bag defined by v = − i
2

(
z̄ − 16

z

)
.
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Figure 18: Magnetisation and energy density for v = − i
2
z̄+ 1

2
z4. There are five anti-skyrmions

surrounding one skyrmion at the centre.

The higher energy solutions have been less studied but we can find solutions with interesting
configurations arising. In fact configurations of the form

v = − i
2
eiα
(
z̄ − zn

Rn−1

)
, R ∈ R>0, n ∈ Z>1, (3.59)

have degree n and n+ 2 zeros: one at the origin and n+ 1 at

zk = Re
2πki
n+1 , k = 0, . . . , n. (3.60)

The zero at the origin corresponds to a Q = −1 skyrmion while the n+ 1 zeros correspond to
Q = 1 anti-skyrmions. An example of a degree four configuration is given in Fig. 18.

The question of computing the number of zeros of expressions like Eq. (3.51) is hard to answer
as the number of zeros can exceed the absolute value of the degree, as we see in our examples.
See [KN04, BHJR13, FKK07] for more details about degrees and zeros of harmonic functions.

3.6 A comment on boundary terms

One of the unexpected features of the magnetic skyrmion model is the subtlety associated with
boundary contributions to the energy. This was first noted in [DM16] where it was observed
that the variational problem for the DM term is not well defined as currently stated. It was
also commented on in the final version of [BSRS20] as well as being one of the subjects of study
in [Sch19a, Sch19b]. The boundary term is important for the solvable line as here there are
configurations which fall of as 1

r
. However, for B > 2A it can be shown that configurations fall

off exponentially so the boundary term is zero in this case. Varying the DM term, Eq. (3.3),
with respect to m we find

DM [m+ δm] = κ

∫
R2

d2x
[
m · (∇×m) + 2 δm · (∇×m)−∇ · (m× δm) +O

(
δm2

)]
,

(3.61)

= DM [m] + κ

∫
R2

d2x
[
2 δm · (∇×m)−∇ · (m× δm) +O

(
δm2

)]
. (3.62)
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The first term of order δn is the one that contributes to the equation of motion, while the
second term is a boundary term. Typically the conditions limm → m∞ ∈ V and lim δm → 0
are enough to ensure that the boundary term vanishes, however, when the fields can fall of as
1
r

this is no longer enough. The issue can be rectified by subtracting the boundary term

BT[m] = −κ
∫
R2

d2x∇ · (m∞ ×m) , (3.63)

when m∞ is constant, as it is for B ≥ 2A, this can be simplified to

BT[m] = −κ
∫
R2

d2xm∞ · (∇×m) = 4πΩ[m]. (3.64)

Subtracting this boundary term for the critically coupled model the energy bound is now purely
in terms of the topological degree. This now means that the skyrmion and anti-skyrmion, f = 0
and f = az, configurations have different energy.

3.7 A view to the future

The critically coupled model of magnetic skyrmions which we encountered here is just one
example of a family of models which describe topological solitons in magnetic systems. The
gauged sigma model interpretation was generalised in [Sch19b] to describe a wider range of
models. To sketch the general story for a gauged sigma model there is a Bogomol’nyi bound in
terms of the topological degree, upto a boundary term. These Bogomol’nyi equations can be
solved in terms of a SL(2,C) valued function. Specifying the connection reduces this general
model to particular case. For example picking an “axially-symmetric ” connection 20 leads to
the critically coupled model we have studied here. Different choices of connection correspond to
different systems. For a full explanation of this generalisation the interested reader is referred
to [Sch19b].

Acknowledgements First and foremost I want to thank Bernd Schroers who was my PhD
supervisor for introducing me to the wonderful world of solitons. I also want to thank Benoit
Vicedo for organising these lectures and giving me the opportunity to give two of them. Finally
I want to thank Benoit Vicedo, Bernd Schroers, Bruno Barton-Singer, Grigorios Giotopoulos
and Lukas Müller for reading through these notes and offering comments and corrections.

References

[BH94] A. Bogdanov and A. Hubert. Thermodynamically stable magnetic vortex states in
magnetic crystals. Journal of Magnetism and Magnetic Materials, 138(3):255 – 269,
1994.

[BHJR13] Pavel M. Bleher, Youkow Homma, Lyndon L. Ji, and Roland K. W. Roeder. Count-
ing Zeros of Harmonic Rational Functions and its Application to Gravitational Lens-
ing. International Mathematics Research Notices, 2014(8):2245–2264, 01 2013.

20The quotes are because what we pick is an axially-symmetric DM term and this puts constraints on the
connection.

28



[BSRS20] Bruno Barton-Singer, Calum Ross, and Bernd J. Schroers. Magnetic Skyrmions at
Critical Coupling. Commun. Math. Phys., 2020.

[BY89] A. Bogdanov and D. A. Yablonskii. Thermodynamically stable vortices in magnet-
ically ordered crystals. the mixed state of magnets. Zh. Eksp. Teor. Fiz, 95:178 –
182, 1989.

[Col88] Sidney Coleman. Aspects of Symmetry: Selected Erice Lectures. Cambridge Univer-
sity Press, 1988.

[Der64] G. H. Derrick. Comments on nonlinear wave equations as models for elementary
particles. Journal of Mathematical Physics, 5(9):1252–1254, 1964.
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