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Solitons in real materials

@ In the previous lecture we saw several examples of mathematical models
with soliton solutions.

@ Now we want to see some examples of applications of solitons.

@ The theoretical models of magnetic skyrmions originate in the work of
Bogdanov and collaborators starting in 1989.

Figure 1: Experimental image of a magnetic skyrmion from Nagaosa and Tokura
2013.
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O(3) sigma model

On Monday we met the O(3) sigma model.

o The static energy is

E[m]:;/dezx(Vm)Q, m:R? - 52

o Finite energy solutions extend to m : S — S? with topological charge

Q[m] = % /d2a: (m - 01m x Oam) .

@ There is a Bogomol’nyi bound

Elm] = & /R (Grm 4 m x 3ym)? + 27|Q[m]].
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O(3) Bogomol’nyi equations

@ The minimum energy configurations solve the Bogomol’nyi equations:
Orm £ m x Oom = 0.
@ These are much easier to study using complex stereographic coordinates

2w 1= jwf?

Fimg = —2 =
T e R T P

The Bogomol’nyi equations, for local C coord z = = + iy, are

d,w=0 or dzsw=0.

_ _2"ta1z" " 4dan
T borm bz T by

@ These are solved by rational maps w(z)
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Real materials

@ To describe real materials we need to add extra terms to the energy
functional.

@ For applications to nuclear matter the 4th order Skyrme term and the 6th
order sextic term.

@ For magnetic matter a first order term is needed to account for spin orbit
interaction (anti-symmetric exchange)

E[m] = /R2 d*x B (Vm)? + km - V_q x m 4 U(m3)
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DM Interaction

Dzyaloshinskii (1958) and Moriya (1960) realised that atomic spin orbit
effects lead to a contribution of the form

2
m-V_gXm=m- E e; “ x Oym.
i=1

e; © = R3(—a)e; are rotations of the standard basis vectors.

The symmetry of the energy functional is the diagonal subgroup of
SO(2) x SO(2). (Translations are also symmetries)

This most commonly studied DM terms are the o = 0 “Bloch” type and the
a = 5 “Néel” type.
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Boundary term

@ From an analysis point of view the DM term can cause issues with the
variational problem for E[m].

@ This is because varying it leads to the DM term leads to the boundary
term

BT[m] = —H/RQ d*z V- (m x dm)

o If the field falls off as 1, like the O(3) lumps, then this term is not set to
zero by limg ..o m — My € V, limg oo M — 0.

@ One solution is to subtract this boundary term. Here we want to
showcase the solutions so will not subtract it.
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Potential V' (mg) I

The potential has the form
V(ms) = B(1—m3) — A(1—m3)

First term is a Zeeman term, minimised by mg3 pointing in the positive z

direction everywhere. Second term is anisotropy term, depends on the sign of
A.

@ A < 0, easy axis potential. This prefers spins to all point in the +z or - z
direction.

@ A > 0, easy plane potential. Prefers spins to lie in the x — y plane.
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Potential V' (ms) II

The ground state depends on the relative sizes of A and B. Can assume
B >0wlo.g

@ B > 2A the minimum is V(m3) = 0atmg =1
@ B < 2A the minimumis V(mg) =B — A — % atmg = %.

@ The vacuum manifolds are
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The Solvable line B = 24

@ The extended O(3) model has exact solutions for the easy plane case
with A = £

o The potential can be written as

V(ms) =

| o

(1 —ms)?

o and the energy functional is

Bl = [ |5 (Fm)? - wm - (Vo xm) 45 (0= ma?
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Axially-symmetric configurations I

@ A particularly nice class of field configurations, respecting the SO(2)
symmetries of the model are the hedgehog fields

sin © cos @
m = | sin®sin ®
cos ©

with © = ©(r) and ® = n¢ + ~.
e They have topological charge Q[m] = —n.
e Hedgehogs respect the full O(2) symmetry if v = § — a.

o Configurations with n > 1 are unstable!
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Axially-symmetric configurations II

@ Searching for solutions of the hedgehog form the equation of motion

becomes
d*e 1dO  sin(20) sin? @ .
=3 = g 5,2 — 2K . + Bsin® (1 — cos ©).

e For Hedgehog configurations the O(3) Bogomol’'nyi equations are
d®  sin®
— 4 —
dr r

0

solved by

2
O(r) = 2arctan ()\r) AeR.

e The EOM for the O(3) model is equivalent to half of the above EOM:

6127@__1@+sin(2@)
dr2 rdr 2r2
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Axially-symmetric configurations III

e For O(r) to satisfy

. 2 @
P e = Bsin® (1 — cosO).
T
- B
A=—
K
@ Thus there are () = —1 hedgehog configurations with chiral magnets on
the solvable line B = 2A.
@ They have energy
E[m] = 4r
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Axially-symmetric configurations IV

o Unlike in most theories with topological solitons there is a finite energy
barrier between the skyrmion and the vacuum.

@ To see this consider hedgehog configurations with v # 7 — a. These are
not solutions of the EOM but still have energy 4.

e Examples witha =0andy = 7,7 = 5,7 =0.
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Critically coupled model I

By tuning the coupling of the DM term and the potential to B = x2 we
can find a whole family of mutli skyrmion configurations.

This critically coupled model can be interpreted as a gauged version of
the O(3) model.

The connection and curvature are

—« 2
A; = —ke; ©, Fio = ke,
The Covariant derivative is
Dim = 0;m — ke; “m, e; ¥ = R(—a)e;.

A quick computation gives

3 [(Dim)? 4 (Dam)?] = 5 (Vin)? 4 (9 )
+ K; (1 + mg)
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Critically coupled model II

@ In terms of the covariant derivative the energy functional is

1/]1%2 d’z [(Dlm)z + (Dym)” — “2m3}

E[m] = 5

o A useful identity re-expresses the covariant derivative in terms of the

topological charge density as

1 1
3 (Dlm)2 + (ng)Q] =3 (Dim 4+ m x D2m)2 + Kk2ms

+m-0ym x Oam + k (01mg — Jamy)
@ This leads to a bound for the energy

E[m] > 4 (Q[m] + Q[m])
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Critically coupled model II1

@ There is equality when the Bogomol’nyi equations are satisfied,
Dim +m x Doym = 0.

@ The quantities in the bound are

[ 2eim.
Q[m]—4ﬂ_/RQd x(m-01m x 0am) ,
] = - /R & (0 — 0o

@ These are the topological charge and the total vortex strength.
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Critically coupled model IV

@ This bound is different from the familiar O(3) sigma model as the Q)[m)]
appears not |Q[m]|.

@ The integrand of the total vortex strength is e3 - (V_, X m), it is the
boundary piece of the DM term.

@ For some configurations the integral of the total vortex strength is not
well defined and needs to be regularised on a disc with a circular
boundary.

@ The best way to understand the Bogomol’nyi equations is to work in
stereographic coordinates
my + itmg

1
w=-—->, and v = —.
14+ ms w
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Complex coordinates

@ In stereographic coordinates the Bogomol’nyi equations become

i
Ozv = —iﬁew‘.
@ This has the general solution

v = —%emi + f(2)
for an arbitrary holomorphic function f.

@ When f is rational, f(z) = ggg, with P, ) of degree p, g then

E[m] = 4mmax(p,q + 1)

when p = ¢ + 1 this is the regularised energy.

Proving this is a worthwhile computation.
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A 700 of skyrmion configurations

@ There are many nice examples of solutions found by picking your
favourite holomorphic function.
@ The simplest choice of f(z) = 0 leads to hedgehog Bloch and Neél

skyrmions depending on if o = 0 or @ = 7.
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In this sector there is a four dimensional family of solutions

v = —%memi—i-az—l—b, a,beC.

By translations and rotations can fix everything but |a|.

Changing |a| corresponds to stretching or squeezing the energy density of the
solution.
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Figure 2: Stretching and squeezing for the configuration v = —%2 +azwitha =0.3
(top left), a = 0.4 (top right), a = 0.5 (bottom left) and a = 0.7 (bottom right).
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E m 11

When |a| > 1, Q = 1 and the solutions look like an anti-skyrmions.
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Figure 3: For v = —
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Line defect I

@ Within the family of solutions with regularised energy 47 a particularly
interesting type of solution is

:_zia<— ié)
v 26 z4+e"z).

@ These solutions have a whole line where m3z = —1, ¢ = —% + 7.

o This is an example of a solution which does not extend to a map of
spheres.
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Line defect 11

Figure 4: Left to right: magnetisation plot and energy density plot for the solution
v=—1(z-2)
2

Calum Ross Topolog NBMPS 27134



Line defect 111

o A feature of the critically coupled model is that linear solutions can pass
through the line defect and change degree.

o This is one of two places where we see a line of south poles, the others
are skyrmion bag configurations.

@ These solutions are one of the reasons we need to work with the
regularised energy.
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@ Moving to the next energy sector there is an eight dimensional family of
solutions
N
vV=—cke Z+ ——————
2 dz+e
with a, b, ¢,d, e € C, and (a, b, c,d,e) ~ A a,b,c,d,e), A € C*.

@ In this family we can find solutions which are a combination of
skyrmions and anti-skyrmions and solutions which just consist of
anti-skyrmions.
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of a configuration involving a skyrmion and three anti-skyrmions.
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Skyrmion bags I

@ An interesting feature that arises at £/ = 8 are the () = 0 skyrmion bags
or sacks. These have been seen numerically in the full model by Foster
and collaborators (2018) and Rybakov and Kiselev (2018).

@ In the critically coupled model they arise when

. ) R2
v = —%Fcem <z — z) .

with R € R+ the radius of the bag.

@ Like the basic holomorphic solution these are invariant under
spin-isospin rotations.

@ In the numerics there are bags with skyrmions inside them but these are
not possible in the critically coupled model.

@ As bags have () = 0 they are non-topological solitons.
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Skyrmion bags II

An example of a bagis v = —% (Z — %)
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Higher energy

The higher energy solutions have been less studied but we can find solutions
with interesting configurations arising.
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Figure 7: Magnetisation and energy density for v = f%
anti-skyrmions surrounding one skyrmion at the centre.

Z+ %z‘l. There are five
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Sources of more information

The critically coupled model and its generalisations are an active area of
study. For more information about magnetic skyrmions check out:

@ B. Barton-Singer, CR and B. J. Schroers. Magnetic skyrmions at Critical
Coupling. CMP 2020.

@ B. J. Schroers. Gauged Sigma Models and Magnetic Skyrmions. Sci
Post Phys 2019.

@ V. M. Kuchkin, B. Barton-Singer, F. N. Rybakov, S. Bliigel, B. Schroers,
N. S. Kiselev Magnetic skyrmions, chiral kinks and holomorphic
functions, 2020.

@ A. Bogdanov and A. Hubert. Thermodynamically stable magnetic vortex
states in magnetic crystals. Journal of Magnetism and Magnetic
Materials 1994

@ N. Nagaosa and Y. Tokura. Topological properties and dynamics of
magnetic skyrmions. Nature nanotechnology 2013.
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