
Notes on rational maps and Popov vortices

C.Ross, August 2017

This is a short note collecting everything that I can find about rational maps in one complex
dimension to help me keep in touch with the details. The aim is to understand the properties
of rational maps which are important to the study of Popov vortices.

1 Basics

For my purposes a rational map is a holomorphic function from CP 1 to itself they are given by
the ratio of two co-prime polynomials. Viewing CP 1 as C ∪ {∞} we can express R as

R(z) =
P (z)

Q(z)
=
a0 + a1z + a2z

2 + · · ·+ anz
n

b0 + b1z + b2z2 + · · ·+ bmzm
, (1.1)

with the condition that an, bm 6= 0 as other wise the polynomials would be of a lower degree
than claimed. We will also want to impose that one of a0, b0 is no zero, if they were both
zero then the two polynomials would have a common zero at z = 0 and thus would not be
co-prime. We also need to mention that both P and Q are not the zero polynomial. If P is the
zero polynomial then R is the constant function zero and if Q is the zero polynomial then R is
the constant function ∞. A rational map has a degree defined in terms of the degrees of the
polynomials

deg(R) = max{deg(P ), deg(Q)}. (1.2)

We are primarily interested in rational maps where deg(R) = deg(P ) = deg(Q) = n but as the
properties of the rational map depend on the relative degrees of the polynomial we shall not
restrict ourselves to this case just yet.

2 Properties

The next thing of interest will be to see what we can say about the zeros, poles, fixed points
and critical points of R. We will be interested in the behaviour of R at infinity so it is useful
to have the following expression, [3],

R(z) = zn−m ·
a0
zn

+ a1
zn−1 + · · ·+ an

b0
zm

+ b1
zm−1 + · · ·+ bm

(2.1)

2.1 Zeros and poles of R

There are three cases to consider here:

m = n. In this case all the zeros and pole lie in C and there are n = deg(R) of each. It can be
shown using (2.1) that

lim
z→∞

R(z) =
an
bm

=
an
bn
. (2.2)

n > m. There are n zeros and m poles in C and R(∞) =∞ so ∞ is a fixed point of R. We can
calculate the order of the pole to be n−m using (2.1). We could also do this by looking
at the zeros of 1

R(1/z)
. Now deg(R) = n and there are n zeros and poles in CP 1.
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n < m. Again there are n zeros and m poles in C but now R(∞) = 0 so∞ is a zero of the rational
map of order m − n, again this is found using (2.1). In this case deg(R) = m and there
are m zeros and poles in CP 1.

Note that by considering the zeros of R(z)−w for w ∈ CP 1 we can see that R is a d-fold map
of CP 1 to CP 1.

2.2 Fixed points of R

In the previous subsection we encountered the fact that for n > m R has a fixed point at
infinity, in fact this is the only time when infinity is a fixed point as we saw by considering teh
behaviour of R at infinity in the three cases above. It is of interest to know how many fixed
points a generic R will have. To count them we proceed following [2]; if w ∈ C is a fixed point
then Q(w) 6= 0, other wise R(w) =∞, so we have

P (w) = wQ(w). (2.3)

We can also see the converse that if (2.3) holds then Q(w) 6= 0 as otherwise P and Q would
have a common root at w and would not be co-prime so w is a fixed point of R. This means
that the fixed points are the solutions of (2.3). It can be shown, Theorem 2.6.2 in [2], that if R
is a rational map and g is a mobius transformation then gRg−1 has the same number of fixed
points at g(w) as R has at w. By the number of fixed points of R at w we mean the number
of zeros of R(z) − z at z = w. In practice this invariance of the number of fixed points under
conjugation is how the number of fixed points at infinity is counted.

The result we want on the number of critical points of a rational map is

Theorem 2.1 (Theorem 2.6.3 in [2]). If d ≥ 1, a rational map of degree d has precisely d+ 1
fixed points in CP 1.

The proof is replicated here for ease of reference.

Proof. As any rational map is conjugate to one which does not fix infinity we shall assume that
R does not fix infinity. Now if w ∈ C is a fixed point of R then the number of zeros of R(z)− z
at w is the same as the number of zeros of P (z)− zQ(z) at w, this is the number of solutions
to (2.3) in C. As R does not fix infinity we have that

n ≤ m = deg(R). (2.4)

This means that
P (z)− zQ(z) (2.5)

has degree deg(R) + 1.

Each fixed point, w ∈ CP 1, has a complex number called the multiplier, M(R,w) attached to
it which is given by

M(R,w) =


R′(w) if w 6=∞,

1

R′(∞)
if w =∞.

(2.6)

The multiplier is conjugation invariant.

2



2.3 Critical points of R

The critical points of R are the points, z, such that R fails to be injective in a neighbourhood
around z. A critical value is the image of a critical point. Now if R has degree d then for a
non-critical value w, R−1(w) is a set consisting of d distinct points, {z1, . . . , zd}. As the zj are
not critical points there is a neighbourhood around each such that R is injective. Before we
can calculate the number of fixed points we need to know about the valency of R at a point z.

2.3.1 Valency of a rational map

We take as our definition of the valency of an analytic function f at a point z0, vf (z0), the
order of the zero of f(z)− f(z0) at z0. In other words it is the k such that

lim
z→z0

f(z)− f(z0)

(z − z0)k
= C (2.7)

for C a finite non-zero constant. A related idea is how much f fails to be injective, in fact if f
is injective near z0 then vf (z0) = 1. Another way to think about it is that vf (z0) is the number
of solutions to f(z) = f(z0) at z0.

The critical points of a, non-constant, rational map R will thus be the points z such that
vR(z) > 1. In fact we can use the fact that R is a d-fold map to express the degree of R in
terms of the valence of points in the pre-image of w ∈ CP 1, independent of which w we pick.
This relation takes the form ∑

z∈R−1(w)

vR(z) = deg(R). (2.8)

Now R is injective when R′ has neither a pole nor a zero so there are only a finite set of critical
values of R and thus vR(z) = 1 for all but finitely many z ∈ CP 1. This means that∑

z∈CP 1

(vR(z)− 1) <∞. (2.9)

2.3.2 Counting critical points

The sum in (2.9) gives a measure of the number of multiple roots of R. Its value is the subject
of the Riemann-Hurwitz theorem.

Theorem 2.2 (Riemann-Hurwitz, Theorem 2.1.7 in [2]). For any non-constant Rational map
R, ∑

z∈CP 1

(vR(z)− 1) = 2deg(R)− 2. (2.10)

The terms in the sum are only non-zero when z is a critical point so the sum can be used to
estimate the number of critical points of a rational map. A corollary of Theorem 2.2 is then:

Corollary 2.3. A rational map of degree d has at most 2d− 2 critical points in CP 1.
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Proof. The proof is fairly straight forward, the number of terms in the sum on the left hand
side of (2.10) is the number of critical points, N , and as vR(z) ≥ 1 for all z ∈ CP 1 we have
that

2d− 2 =
∑

z∈CP 1

(vR(z)− 1) ≥ N. (2.11)

If we think of vR(z)− 1 as the multiplicity of a critical point z then counted with multiplicity
there are exactly 2d− 2 critical points.

I will not prove Theorem 2.2 here but a proof is given in [2] and in many other good complex
geometry texts. Notice that there is no restriction here on whether∞ is a critical point or not.
This is because if infinity is a critical point we can conjugate with a mobius transformation and
work with a rational map where ∞ is not a critical point.

3 Application to Popov vortices

Here we change tack and consider Popov vortices on CP 1 and follow the discussion in [4] to
see how they are related to rational maps. To see that Popov vortices correspond to rational
maps we will proceed in two stages; stage one is showing that a Popov vortex corresponds to a
constant curvature 1 metric on CP 1 with finitely many conical singularities. While steage two
will be to invoke Theorem 1.3 in [5] which says that all such constant curvature 1 metrics with
finitely many conical singularities correspond to pulling back the standard metric on CP 1 by a
rational map.

Stage one is the part that will require some work. Note that the Popov vortex equations on
the 2-sphere of radius 1,

∂z̄φ− iaz̄φ = 0, F = da = −(1− |φ|2)R. (3.1)

can be shown to be imply the equation

∂z∂z̄u =
2

(1 + |z|2)2
(1− eu), (3.2)

where eu = |φ|2. We can solve equation (3.2) explicitly in the following way. Consider a generic
metric with Gauss curvature K,

ds2 = Ω(z, z̄)dzdz̄, (3.3)

on a Riemann surface S. We know that

K = − 2

Ω
∂z∂z̄ (ln Ω) . (3.4)

The conformally related metric

ds2 = ev(z,z̄)Ω(z, z̄)dzdz̄, (3.5)

with Gauss curvature K ′ we have that

K ′ = − 2

evΩ
∂z∂z̄ (v + ln Ω) =

1

ev

(
− 2

Ω
∂z∂z̄v +K

)
. (3.6)
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If we take K ′ = K = 1 and Ω = 4
(1+|z|2)2

, the conformal factor for the standard metric on the
sphere we have that

∂z∂z̄v =
2

(1 + |z|2)2
(1− ev), (3.7)

which is the same as (3.2) for v = u. Thus a Popov vortex defines a conformal metric with
constant curvature 1. TO see that this metric has finitely many conical singularities note
that the metric (3.5) degenerates when |φ| = 0 and that imposing finite energy implies that φ
only has finitely many zeros. By analysing (3.5) around ev = 0 we can see that the metric is
conical around these points. Thus we can say that a Popov vortex, on the 2-sphere of radius
1, is equivalent to a constant curvature 1 metric with finitely many conical singularities, or
degeneracies in this case. Thus Theorem 1.3 in [5] can be used to tell us that a Popov vortex
is equivalent to a rational map.

To see the exact relation consider the rational map R : CP 1 → CP 1 then

R∗ds2 =
4R′(z)R′(z)

(1 + |R(z)|2)2
dzdz̄ =

R′(z)R′(z)(1 + |z|2)2

(1 + |R(z)|2)2
ds2

CP 1 . (3.8)

In other words

|φ|2 = eu =
(1 + |z|2)2

(1 + |R(z)|2)2
R′(z)R′(z). (3.9)

The zeros of |φ| will then be the critical points of R. Here is where we need to be careful, our
stereographic chart does not include the south pole as that is the point we are projecting from
and corresponds to the point at infinity.

Arriving at these results has not involved making any assumption about the form of the rational
map R so we can come to the conclusion that all rational maps correspond to Popov
vortices! The conditions placed on R in Equation (21) of [4], that a0, b0, an, bn 6= 0, seem to
be there just to ensure that the two kinds of singularity present can be clearly seen. Another
reason for placing further restrictions on R would be to avoid having a vortex outside the chart
we are working in. This would be precisely what would happen if

3.1 Some examples

Example 3.1. Take R(z) = zk for k > 1. There are two critical points, 0 and ∞ each with
multiplicity k − 1. In fact as stated in [4] The vortex solution is circularly symmetric, as φ
depends only on |z|k−1 and reflection symmetric in |z| = 1.

Example 3.2. A degree 1 rational map, otherwise known as a mobius transformation, will
correspond to the zero vortex case, N = 0. These non-trivial solutions will have different Higgs
fields but in all the cases φ will not have any zeros or winding.
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