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These notes are written to help me understand certain properties of monopoles. In particular
I hope to sumarise the construction of mini-twistor space for monopoles due to Hitchin [1],
spectral curves following [1, 2] and the rational map, particularly from the scattering point of
view, following [1, 3]. Maybe I will include a discussion of the Moduli space following [4] if I
have the time and inclination. A good general reference for monopoles is [5], however, it does
not contain all the details for the topics that I want to include here.

1 Basics

We will be considering a three dimensional gauge theory with gauge group G, a matrix group.
Our set up is a principal G bundle over a Riemannian 3-manifold M , π : P →M . A monopole
requires two things; a connection, A, on this principal bundle and a section, Φ, of an associated
vector bundle,

V // E

��
M

(1.1)

where V is an n dimensional vector space and we have a representation of the Lie group
ρ : G→ GL(n, V ). We will work with the case of ρ being the adjoint representation.
The action for the theory is

L =
∫
M

(
Tr
(1

2F ∧ ?F + 1
2DΦ ∧ ?DΦ

)
+ V (Φ)dVol

)
, (1.2)

where
F = dA+ 1

2[A,A] (1.3)

is the curvature of the connection A and

DΦ = dΦ + [A,Φ], (1.4)

is the covariant derivative of Φ. The third term,

V (Φ) (1.5)

is a potential term and we will usually be interested in minimisers of this potential. For Φ in
the adjoint representation the equations of motion will be

D ? F = [?DΦ,Φ], (1.6)

D ? DΦ = dV (Φ)
dΦ . (1.7)

We also have to keep in mind that the curvature satisfies the Bianchi identity,

DF = 0. (1.8)
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We call pairs (A,Φ) which solve these equations G-monopoles. The most familiar examples
being the U(1) Dirac monopole and the SU(2) t’Hooft-Polyakov monopole.
Typically the gauge group will be broken down to a sub group H which stabilises a vacuum
expectation value of the Higgs Field, Φ0, for which V (Φ0) = 0. To have an integrable energy
density we need to impose the following asymptotics

Φ|∂M ' Φ0, (DΦ)|∂M ' 0. (1.9)

From the condition on the covariant derivative we can get a condition on the connection A|∂M .

1.1 BPS monopoles

We now specialise to solutions, (A,Φ), such that

V (Φ) = 0, (1.10)

As we still want an integrable energy density the same asymptotics still apply.
These are called BPS monopoles and correspond to limiting values of the couplings in the
potentials, this is covered nicely in chapter 2 and 3 of [6]. In this case a completing the square
argument can be used to find first order equations which imply the second order G-monopole
equations. The argument proceeds as follows;

L = 1
2

∫
M

Tr (F ∧ ?F +DΦ ∧ ?DΦ), (1.11)

= 1
2

∫
M

Tr ((F ± ?DΦ) ∧ ? (F ± ?DΦ)∓ 2F ∧DΦ), (1.12)

≥ ∓
∫
M

Tr(F ∧DΦ), (1.13)

≥ ∓
∫
∂M

Tr(FΦ)|∂M . (1.14)

The first order equation
F = ∓ ? DΦ (1.15)

is known as the Bogomolnyi equation and this bound is known as a Bogomolnyi bound. Consider
that Φ0 : ∂M → G/H, where G/H is the quotient of the gauge group by the stabiliser of Φ0.
We can show that

∓
∫
∂M

Tr(FΦ)|∂M ∝ deg(Φ0). (1.16)

In fact as Φ0 maps in to the coset space G/H which has distinct pieces the maps will fall into
inequivalent classes and Φ0 ∈ π2(G/H).
For a semisimple gauge group, G, π2(G) = 0 and we have that

π2(G/H) ' Ker (π1(H)→ π1(G)) , (1.17)

if further G is simply connected then π1(G) = 0 and

π2(G/H) = π1(H). (1.18)

2



Example 1.1. Specialise to the case of M = R3 and G = SU(2) and H = U(1), typically
chosen to be the U(1) generated by τ 3. In this case the boundary will be ∂R3 ' S2

∞, the two
sphere at infinity and the asymptotics gives us a map

Φ0 : S2∞→ SU(2)/U(1) ' S2, (1.19)

so Φ0 ∈ π2(S2) ' Z. The integral in the bound then becomes

lim
r→∞

∫
S2

Tr(FΦ)| = 4π deg(Φ0). (1.20)

This could also be interpreted as the flux of an asymptotic, abelian, magnetic field,
∓Tr(F |S2

∞Φ0) through S2
∞. We interpret this as the magnetic charge of the monopole. A

specific example of a BPS monopole on R3 is the Prasad-Somerfield solution which asymptotes
to the Dirac monopole.

2 Mini-twistor space

As geodesics in R3 are straight lines so I will just refer to line in this section, I will also use the
term monopoles to mean BPS monopoles.

2.1 Constructing the twistor space

We follow [1, 2] here in taking the twistor space, T , to be the space of all oriented lines in R3.
The correspondence space picture is the following

S2 × R3

p

{{

pr2

$$
T R3

(2.1)

The idea of the construction proceeds as follows for a point ~x ∈ R3 the oriented lines through
it are parametrised by an S2 with centre ~x. Each point ~u ∈ S2 gives the direction of the line.
This results in the pair (~u, ~x) ∈ S2 × R3. To find the twistor space we consider the flow along
the straight line generated by a vector X which induces a map

~x 7→ ~x− (~x · ~u)~u = ~v, (2.2)

This map gives a vector ~v orthogonal to ~u which is the closest approach of the line to the origin1

We thus have the following parameterisation for the straight line γ,

γ = {~y ∈ R3|~y = ~v + t~u with ~u · ~v = 0, t ∈ R}, (2.3)

which gives us the twistor space

T = {(~u,~v) ∈ S2 × R3|~u · ~v = 0}. (2.4)
1To see this consider that a generic point on γ will be given by ~x+t~u for t ∈ R which has norm |~x|2+2t~x·~u+t2.

This is minimised when t = −~x · ~u.
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This space is in fact nothing but the tangent bundle to the 2-sphere, TS2. By identifying S2

with CP 1 in the ususal manner we have can extend the natural complex structure on TS2, this
is equivalent at a point (u, v) to taking the cross product with the normal direction u. To see
this consider that a tangent vector to γ will be a pair (u̇, v̇) such that

u · u̇ = 0, u̇ · v + u · v̇ = 0. (2.5)

This leads to a field orthogonal to the geodesic V = tu̇+ v̇− (v̇ ·u)u, which can be equivalently
written as the pair of tangent vectors (u̇, v̇− (v̇ · u)u). It is on this pair of tangent vectors that
taking the cross product with ~u is equivalent to the standard complex structure. In terms of
complex coordinates a tangent vector will be of the form w ∂

∂z
and we can give each line γ the

complex coordinates (w, z).
A line, Px through a fixed point ~x ∈ R3 is defined by its direction ~u and is thus equivalent to
a holomorphic section of π : T → CP 1. These sections are holomorphic vector fields on CP 1

which can be expressed in terms of a quadratic polynomial2. The sections have the form

s(z) =
(
az2 + bz + c

) d

dz
, (2.6)

and are real, with respect to the real structure3 τ(z) = z̄−1, if and only if

a = −c̄, b = b̄. (2.7)

Checking this is left as an exercise to the reader but is discussed in [1].
This means that the point ~x ∈ R3 is represented by the real section

s(z) =
((
x1 + ix2

)
− 2x3z −

(
x1 − ix2

)
z2
) d

dz
. (2.8)

In [1] it is noted that the space T should really be interepreted as an affine bundle over CP 1,
then a choice of a zero section is equivalent to choosing an origin in R3.

2.2 Constructing monopoles from twistor space

To construct a SU(2) monopole on R3 we need to consider a principal SU(2) bundle, P , over
R3 with connection DA = d + A, and a section of the adjoint bundle Φ. These give a BPS
monopole if the curvature of A is related to the Higgs field Φ through

F = ± ? DAΦ. (2.9)

If we take E to be the associated rank 2 vector bundle to P then following [1] define a rank 2
vector bundle Ẽ on the twistor space T as

Ẽp = {s ∈ Γ(γp, E)| (iUDA − iΦ) s = 0}. (2.10)

In the above definition γp is the oriented geodesic corresponding to a point p ∈ T and U is the
unit tangent vector to γp. As we have an ODE along each line, the finite dimensional space of
solutions gives the fibre of Ẽ over each point p ∈ T .
With this definition in hand in Hitchin proves the following theorem

2This is because the tangent bundle has degree 2
3This real structure is minus the antipodal map.
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Theorem 2.1 (Theorem (4.2) in [1]). If (A,Φ) solve the SU(2) BPS equations, then Ẽ is in a
natural way a holomorphic vector bundle over T such that

1. Ẽ is trivial on every real section.

2. Ẽ has a symplectic structure.

3. Ẽ has a quaternionic structure,
σ : Ẽp → Ẽτ(p), (2.11)

with σ2 = −1.

Conversely, every such holomorphic vector bundle on T defines a BPS monopole.

The proof of this theorem is given in [1] and will not be replicated here. In fact the theorem
can be extended to hold for any of the standard Lie groups4.
Example 2.2 (U(1) monopoles). Here the bundle E over R3 is taken be a line bundle with a
flat connection, e.g. A is pure gauge, and constant Higgs field Φ = i. The theorem tells us that
we should construct a holomorphic line bundle over the twistor space L→ T .
We define L fibre wise above a point p ∈ T as

Lp = {s ∈ C∞(γp)|
ds

dt
+ s = 0}. (2.12)

Note that since E is a line bundle we have that Γ(γp, E) ' C∞(γp) so the definition of Lp is
just a special case of the definition of Ẽp above. The solutions of the ODE are of the form
s = Ae−t, for A a constant.
On the correspondence space S2 × R3 define the function

l̂ : (~u, ~x) 7→ e−~u·~x, (2.13)

on a straight line5, ~x = ~y + t~u, l̂(~u, ~x) = e−~y·~ue−t so l̂ defines a global non-vanishing section of
the line bundle L→ T . It is important to bear in mind that l depends on the choice of origin.
Now that we have global sections of L we want to compute ∂̄l. The first thing to note is that
if ~u · ~x = 0 then l̂ = 1 so we can see that ∂̄l = 0 on the horizontal piece of S2 × R3, that
is the piece orthogonal to the S2 fibres. However, this horizontal piece becomes the fibre of
π : T → S2 which means that ∂̄l = 0 in the fibre direction.
To check that it also vanishes in the S2 fibre direction of the correspondence space we use the
standard complex coordinates z = x + iy. Using stereographic projection from the south pole
of the two-sphere we find that

~u =


2x

1+|z|2
2y

1+|z|2
1−|z|2
1+|z|2

 . (2.14)

4The reality condition apparently needs to be modified and the group is required to be a real form of a
complex Lie group.

5Note that in the parameterisation of geodesics we were using above ~x = ~v + s~u where the first piece ~v
vanishes when dotted with ~u however, the parameter s may not be the same as t but will differ by addition of
a constant.
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Expressing the vector ~x as

~x =

x
1

x2

x3

 , (2.15)

and writing a = x1 + ix2, b = x3 we arrive at

~u · ~x = az̄ + āz + b (1− |z|2)
1 + |z|2 . (2.16)

In the proof of the theorem Hitchin defines the ∂̄ operator through the connection ∇0,1 on
correspondence space which acting on ~u · ~x will only have a ∂

∂z̄
∧ dz̄ piece6. Computing this we

have

∇0,1 (~u · ~x) =
(
a− 2bz − āz2

) dz̄

(1 + |z|2)2 . (2.17)

In the complex coordinates (w, z) 7→ w d
dz

for T interpreted as TS2 comparison with the real
section corresponding to the point ~x ∈ R3, Equation (2.8), we have that

w = a− 2bz − āz2. (2.18)

This gives the equation for the projective line Px which corresponds to the point ~x7. From this
we have that the section l satisfies8

∂̄l =
(
∇0,1l̂

)′
= − wdz̄

(1 + |z|2)2 l. (2.19)

To understand more about L consider a local holomorphic section fl, as ∂̄(fl) = 0 we have
that

∂f

∂w̄
= 0, ∂f

∂z̄
= wf

(1 + |z|2)2 , (2.20)

which leads to
f = g(w, z)e−

w
z(1+|z|2) , (2.21)

for g holomorphic. In local patches U± where

U− = {(w, z) ∈ T |z 6= 0}, U+ = {(w, z) ∈ T |z 6=∞}, (2.22)

we have the functions

f− = e
− w
z(1+|z|2) , regular at z =∞ but singular at z = 0, (2.23)

and
f+ = e

− w
z(1+|z|2) +w

z , regular at z = 0 but singular at z =∞. (2.24)
6This is because ∂̄l = 0 along the S2 fibre.
7Note that the section w = 0 corresponds to the origin of R3.
8We are using a prime here to denote transforming a function on the correspondence space in to a section

of L. This is how the ∂̄ operator is defined in [1].
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We thus have f±l as a trivialisation of L on U±. On the intersection we have that

f−l = e−
w
z f+l, (2.25)

so that the transition functions are

φ+−(w, z) = e−
w
z . (2.26)

In these coordinates the real structure, τ , on T is

τ(w, z) =
(
− w̄
z̄2 ,−

1
z̄

)
, (2.27)

this interchanges U± and it can be seen that

φ+− ◦ τ(w, z) = e
w̄
z̄ = φ̄−1

+−(w, z), (2.28)

which gives an antiholomorphic isomorphism σ : Lp → L∗τp.
The line bundle L is sometimes called the exponential line bundle.

So far we have not imposed any boundary conditions on our solutions to the BPS equations, if
we do we can define the spectral curve of a monopole.

3 Spectral curves

From a physical viewpoint the boundary conditions we shall impose on a monopole are the
requirement that the energy is finite, this corresponds to having the fields Φ, A tend to a
vacuum value as |~x| → ∞. This corresponds to picking a direction in the Lie algebra, Φ∞,
which breaks the symmetry from G to the stabaliser of Φ∞. Here we will follow [2] and only
consider the case of maximal symmetry breaking where G breaks to its maximal torus T . For
Φ the asymptotics are taken to be

Φ = Φ∞ + ψ
1
r

+O
( 1
r2

)
, (3.1)

where Φ∞ is valued in G/T and ψ : S2
∞ → K/T . In [2] some examples of maximal tori for

particular Lie groups are given.
Working in spherical polar coordinates and a radially symmetric gauge, Ar = xiAi = 0, the
BPS equations give that

∂rΦ = 1
r2 sin θFθϕ. (3.2)

Differentiating the boundary conditions, Equation (3.1), and imposing
1

sin θFθϕ = ?F∞θϕ +O
(1
r

)
, (3.3)

we find that9

Φ = Φ∞ − ?F∞θϕ
(1
r

)
+O

( 1
r2

)
. (3.4)

9Here we are just comparing the coefficients at a given order of 1
r and find that at order r0 : ∂rΦ∞ = 0, at

order r−1 : ∂rψ = 0 and at order r−2 : ?F∞θϕ = −ψ.
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The case that will be of particular interest to us will be when G = SU(n) where the maximal
torus T is the traceless diagonal n× n matrices. Here the asymptotics become

Φ = idiag (λ1, . . . , λn)− i

2rdiag (k1, . . . , kn) +O
( 1
r2

)
, (3.5)

here the traceless condition means that∑λi = ∑
ki = 0 and we also assume that the eigenvalues

of Φ∞ are ordered such that λ1 > λ2 > · · · > λn and ki ∈ Z10.
Before discussing the spectral curve for general n we will first consider the case n = 2.

3.1 Gauge group SU(2)

The key to the construction of the spectral curve is the equation

(iUDA − iΦ(~x)) v(~x = 0), (3.6)

for ~x ∈ γ and v(~x ∈ C2, which we encountered before when going between bundles over R3 and
T . If there is a parameter t along the line we can write this as(

d

dt
+ uiAi(t)− iΦ(t)

)
v(t) = 0. (3.7)

If we plug in the boundary conditions, Equation (3.5) for n = 211, and keep working in the
radial gauge where uiAi = 0 we arrive at

dv

dt
+
(
λ− k

2t 0
0 −λ+ k

2t

)
v +O

( 1
t2

)
v = 0. (3.8)

This equation will have two solutions, v1(t), v2(t) such that

v1(t)t− k2 eλt →
(

1
0

)
, v2(t)t k2 e−λt →

(
0
1

)
, as t→∞. (3.9)

This means that there is a one-dimensional subspace L+(γ) ⊂ Ẽ of solutions decaying exponen-
tially12 as t→∞. Changing variables to s = −t we see that there is another one-dimensional
subspace L−(γ) ⊂ Ẽ of solutions decaying at s→∞, negative infinity with respect to t.

Definition 3.1. The spectral curve S is the set of lines γ such that

L+(γ) = L−(γ). (3.10)

It is noted in [1] that the antiholomorphic structure σ : Ẽ → Ẽ sends L+ → L− and gives
L− = L+(−k). This is used to project L− ⊂ Ẽ onto (L+)∗ and obtain a holomorphic section

ψ ∈ H0
(
T,
(
L+ ⊗ L−

)∗)
' H0 (T,O(2k)) . (3.11)

The zero set of ψ corresponds to L+ = L−, the spectral curve S.
In [1] the following proposition is proved:

10This is because they are the Chern number of the piece of F∞ along each of the n asymptotic U(1) bundles.
11We take λ1 = −λ2 = λ and k1 = −k2 = k.
12N.b. v1(t) decays exponentially as it needs to be multiplied by eλt for λ > 0 to get a constant vector

asymptotically.
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Proposition 3.2 (Proposition (7.3) in [1]). The spectral curve S of a charge k SU(2) monpopole
has the following properties:

1. S is compact.

2. S is defined by the equation

p(w, z) = wk + a1(z)wk−1 + · · ·+ ak(z) = 0, (3.12)

with ai(z) a degree 2i polynomial in z.

3. The line bundle L2 is holomorphically trivial on S.

4. S is preserved by the real structure on τ .

I will sketch why the spectral curve is defined by the zero set of a polynomial but the rest of
the details are given in [1]. The idea is that for a polynomial p(w, z) as in the theorem

ψ = p(w, z)
(
d

dz

)k
(3.13)

will be a holomorphic section of O(2k), and that the dimension of the space of such sections
is (k + 1)2. Next it can be checked that dimH0 (T,O(2k)) ≤ (k + 1)2, which means that all
sections must be off this form. Compactness of S then implies that the coefficient of wk is
non-zero13.
We now consider an example.

Example 3.3 (Charge one monopole). Take k = 1 then the polynomial which defines the
spectral curve will be

w + a1(z) = 0 (3.14)

for a1(z) of degree two. However, this is just a section of π : T → S2 and as S is real corresponds
to some projective line Px and thus a specific point ~x ∈ R3. In fact in [1] it is shown that if we
pick the origin of R3 we get the BPS monopole, and solving the scattering equation for lines
through the origin dx

dr
− Φ(r)x = 0 we find the unique solution

x =
(

0
r

sinh(r)

)
, (3.15)

which decays as r → ±∞ which gives us that S = Px. This also tells us that the BPS monopole
is the unique charge 1 solution to the BPS equations.

Is it worth including the axially symmetric example from Hitchin as well? Also should I spell
out more of the details from the first example?

13I do not find this clear so need to think about it.
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3.2 Gauge group SU(n)

Now following [2] we can start to consider how to define the spectral curve for a higher rank
unitary group SU(n). In principal we could talk about any of the classical groups but it is
easiest to stick to unitary groups for now14 The idea is to consider a group G = SU(n) and an
irreducible representation V of G. Usually V will be taken to be the fundamental representation
but it doesn’t have to be. The key idea is that each representation will have a highest weight
state, denote the representation by Vλ. Then we can construct the space Eλ(γ) of solutions to

(Dt − iΦ) v(t) = 0, (3.16)

along the line γ with v(t) valued in Vλ. If there is an inner product 〈, 〉 on Vλ then considering
w(t) ∈ Eλ(−γ), v(t) ∈ Eλ(γ) we have, using Equation (3.16) along γ and (Dt + iΦ)w(t) = 0
along −γ, that

d

dt
〈v(t), w(t)〉 = 〈Dtv, w〉+ 〈v,Dtw〉, (3.17)

= 〈iΦv, w〉+ 〈v,−iΦw〉, (3.18)
= 〈v,−iΦ∗w − iΦw〉, (3.19)
= 0, (3.20)

using Φ∗ + Φ = 0 in su(Vλ). This give a pairing

〈, 〉 : Eλ(γ)× Eλ(−γ)→ C. (3.21)

Each of the weights, µ in Vλ will correspond to an eigenvector15 e(µ) such that there is a
v(t) ∈ Eλ(γ) satisfying

v(t)t−
µ(?F∞)

2 eµ(Φ∞)t → e(µ) as t→∞. (3.22)

By considering the highest weight λ we can define the one-dimensional subspace

E+
λ (γ) = {v ∈ Eλ(γ)|‖v(t)t−

λ(?F∞)
2 eλ(Φ∞)t‖ is bounded as t→∞}. (3.23)

The other weights will can be used to define the corresponding dimVλ−1 dimensional subspace

E−λ (γ) = {v ∈ Eλ(γ)|‖v(t)t−
µ(?F∞)

2 eµ(Φ∞)t‖ is bounded as t→ −∞, ∀µ < λ}, (3.24)

where we have used the ordering on the weights to say that µ < λ. The decay rates of the
elements of these subspaces then give that

〈E+
λ (γ), E−λ (−γ)〉 = 0. (3.25)

We can now define the spectral curve associated to the representation with highest weight λ.
14I am also much more comfortable with the sections of [2] that just focus on unitary groups.
15I think that these are eigenvector of the Cartan of su(Vλ). We need the same ODE theory as in the SU(2)

case but now we have that Vλ splits into weight spaces and each weight space gives a solution to Equation
(3.16).

10



Definition 3.4. The spectral curve Sλ is the real algebraic curve given by the set of lines, γ,
such that

E+
λ (γ) ⊂ E−λ (γ). (3.26)

If the weight λ can be decomposed as a sum of fundamental weights λ = ∑
i niµi, ni ∈ Z+, then

the spectral curve can be decomposed as the sum

Sλ =
∑
i

niSi. (3.27)

We will call Si = Sµi the i’th spectral curve of the monopole. We can define topological weights
for the monopole using ?F∞ as

mi = µi (?F∞) . (3.28)
In [2] The degree of Si is shown to be 2mi and thus Sλ has degree 4λ(?F∞) = ∑

i nimi.
We can consider embedding a k = 1, SU(2) monopole along a simple root, this is called a
fundamental monopole and means that mi will only be non-zero for the fundamental weight
which corresponds to this simple root, αi. From Example 3.3 above we know that Si corresponds
to the lines through the monopoles centre, the projective line Px, and as the other topological
weights are zero their spectral curves will be empty.
This next part is pretty much a direct lift from [2] but I will try to add some comments.
Working in the fundamental representation of SU(n) we can say a little more. Here we know
that the asymptotics of the Higgs field, Equation (3.5), along a line γ are

Φ = idiag (λ1, . . . , λn)− i

2rdiag (k1, . . . , kn) +O
( 1
r2

)
, (3.29)

where the matrices are traceless and the λi are ordered as above. Then there will be a plus
subspace defined for each λi as

E+
i (γ) = {v ∈ E(γ)|‖v(t)t−

ki
2 eλit‖ is bounded as t→ +∞}, (3.30)

and the minus subspace as

E−n−i+1(γ) = {v ∈ E(γ)|‖v(t)t−
ki
2 eλit‖ is bounded as t→ −∞}. (3.31)

This time the pairing will satisfy

〈E+
i (γ), E−n−i(−γ)〉 = 0, 〈E−i (γ), E+

n−i(−γ)〉 = 0, (3.32)

and we define
Ti = {γ|E+

i (γ) ∩ E−n−i(γ) 6= 0}. (3.33)
An alternative picture of Ti is as the collection of γ such that the image

ΛiE+
i (γ)→ Λi

(
E/E−n−i(γ)

)
(3.34)

vanishes. In fact Si = Ti gives the i’th spectral curves. A constraint is needed on Si ∩ Sj,
that it is finite whenever the i’th and j’th simple roots are joined on the Dynkin diagram. The
decomposition of E(γ) in terms of the E+

i (γ) gives a flag decomposition

E+
1 (γ) ⊂ E+

2 (γ) ⊂ · · · ⊂ E+
n (γ) = E(γ) (3.35)

from which E can be built up using the i’th spectral curve at each step.
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3.2.1 Examples

We are now able to see some examples of how to construct the spectral curve for SU(2) and
SU(3) monopoles when V is taken to be the fundamental representation. Completely explicit
constructions will not be given as the form of A would be needed for that. According to
[2] for the exceptional groups it is better to work with the adjoint representation which adds
complications.

Example 3.5. We have already encountered the standard definition of the spectral curve when
the Gauge group is SU(2) but now we want to see that the more general definition for SU(n)
reduces to the familiar case when V is the fundamental representation of SU(2). Here the
asymptotic expression for the Higgs field is

Φ = i

(
λ 0
0 −λ

)
− i

2r

(
k 0
0 −k

)
+O

( 1
r2

)
. (3.36)

There will be two weights, λ± such that λ±(?F∞) = ±k, λ±(Φ∞) = ±λ. Following standard
results on ODEs we can see that for an eigenvector e(λ±) ∈ V (λ±) that there will be a function
v(t) ∈ E(γ) such that

v(t)t−
λ±(?F∞)

2 eλ±(Φ∞)t → e(λ±) as t→∞. (3.37)

In this case λ+ is the highest weight and the line bundle of interest is

E+
λ+(γ) = {v ∈ E(γ)| ‖v(t)t− 1

2λ+(?F∞)eλ+(Φ∞)t‖ is bounded as t→∞},

= {v ∈ E(γ)| ‖v(t)t− k2 eλt‖ is bounded as t→∞},
= L+(γ).

By writting out the definitions in this way we also see that in this case

E−λ+ = L−(γ). (3.38)

As these are both 1 dimensional subspaces the condition that the spectral curve is given by

S = {γ|E+
λ+(γ) ⊂ E−λ+(γ)} (3.39)

reduces to the familiar condition

S = {γ|L+(γ) = L−(γ)} (3.40)

Example 3.6. If we take V to be the fundamental 3 representation of su(3), which has highest
weight

λ =
(

1
2 ,
√

3
6

)
, (3.41)

then dimE−λ = 2. The weight space for this representation of SU(3) is given in Figure 1. We
could also take the anti-fundamental 3 and find the same thing.
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(1
2 ,
√

3
6 )

(0,−
√

3
3 )

(−1
2 ,
√

3
6 )

Figure 1: The weight lattice for the 3 of SU(3) with highest weight (1
2 ,
√

3
6 ), the 3̄ is the reflection

of this in the y-axis.

TO make contact with the more explicit construction of the spectral curve for SU(n) in its
fundamental representation recall that the Higgs field has the following form

Φ = i

λ1 0 0
0 λ2 0
0 0 −λ1 − λ2

− i

2r

k1 0 0
0 k2 0
0 0 −k1 − k2

+O
( 1
r2

)
. (3.42)

The subspaces used to construct S in this case are

E+
1 (γ) = {v(t) ∈ E(γ)|‖v(t)t−

k1
2 eλ1t‖ <∞, t→∞}, (3.43)

E+
2 (γ) = {v(t) ∈ E(γ)|‖v(t)t−

k2
2 eλ2t‖ <∞, t→∞}, (3.44)

E+
3 (γ) = {v(t) ∈ E(γ)|‖v(t)t

k1+k2
2 e−λ1t−λ2t‖ <∞, t→∞}, (3.45)

E−1 (γ) = {v(t) ∈ E(γ)|‖v(t)t
k1+k2

2 e−λ1t−λ2t‖ <∞, t→ −∞}, (3.46)

E−2 (γ) = {v(t) ∈ E(γ)|‖v(t)t−
k2
2 eλ2t‖ <∞, t→ −∞}, (3.47)

E−3 (γ) = {v(t) ∈ E(γ)|‖v(t)t−
k1
2 eλ1t‖ <∞, t→ −∞}. (3.48)

Due to the ordering on the λi we immediately see that E+
1 ⊂ E+

2 ⊂ E+
3 , you should also

convince yourselves that E+
3 = E, to see this go back to the definition of E(γ) in terms of

solutions to the scattering equation. Also E−1 ⊂ E−2 ⊂ E−3 = E for the same reason.
There will be two spectral curves S1 when E+

1 ⊂ E−2 and S2 when E−1 ⊂ E+
2 .

4 Monopoles and rational maps

A nice observation is made about the rational map of an SU(2) monopole in [4]. We saw
that that there are two solutions, v1(t), v2(t) to the scattering equation, Equation (3.16), along
a straight line γ with v1(t) decaying exponentially as t → ∞. However, there will also be
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a solution v′1(t) which decays exponentially as t → −∞. This can be written as a linear
combination of the v’s

v′1(t) = pv1(t) + qv2(t). (4.1)
To each line γ we then assign

R(γ) = p

q
∈ CP 1 (4.2)

Called the scattering along γ. It is a theorem due to Donaldson which states that for a given
charge k, SU(2), monopole the scattering is a based rational function of degree k. In fact it is
in [3] where the interpretation of the Donaldson rational map in terms of the scattering data is
given. To understand this a little better split R3 into C× R where we take ζ = x1 + ix2 to be
our complex coordinate. If we consider lines through the ζ-plane parallel to the x3-axis then
we can take t = x3 in the scattering equation and we will find that p, q are functions of ζ. This
results in

R(ζ) = p(ζ)
q(ζ) (4.3)

being the Donaldson rational map.

5 Moduli space

This section needs to be written! I can use [5] as a reference for the SU(2) case and the geodesic
approximation.

1. Metric on the moduli space and the geodesic approximation.

2. Hyperkähler construction in terms of moment maps.

3. Euclidean SU(2) monopoles, explicit construction of the charge two moduli space metric
and Sen form.
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