
Moment maps and Hyperkähler quotients

Notes C Ross 1, March 2017

These are some notes on moment maps and hyperkähler quotients that I wrote to help
me in preparing for a talk at the BIG workshop on Higgs Bundles2. The end goal is
to have a construction where the self-duality equations can be viewed as moment maps
and the Moduli space of solutions to the self-duality equations can then be constructed
as a hyperkähler quotient. The main referenece is [1] though [2] was particularly useful
for an explicit example of a moment map computation, the “real” case considered in
Example 1.2 below.

1 Moment maps

Moment maps appear whenever we have a Lie group, G acting on a symplectic space,
M , where the group action leaves the symplectic form ω fixed. We can construct a map

µ : M → g∗,

where g∗ is the dual of the Lie algebra of G, through

〈µ(x), ζ〉 = fXζ(x)

where ζ ∈ g, x ∈ M , Xζ is the vector field generated by ζ, fXζ is the Hamiltonian
function for the vector field Xζ and <,> is the natural pairing between a Lie algebra
and its dual. Then using the symplectic form we can turn this into the one form

d〈µ, ζ〉 = dfXζ = iXζω,

which can be calculated given Xζ .

1.1 Examples

Most examples focus on the easy to understand case M = T ∗R3 where G is either the
group of translations, R3, the group of rotations, SO(3), or their semi-direct product the
Euclidean group in three dimensions. The Islands project3 has several nice examples in-
cluding the first one I give here, the case of SO(3) acting on T ∗R3 and some Hyperkähler
examples including constructing Taub-Nut space as a Hyperkähler quotient.

Example 1.1. When M = T ∗R3 and G = R3 we have the symplectic form

ω = dxi ∧ dyi,
1If there are any comments or corrections that you feel I should know about you can contact me at

cdr1@hw.ac.uk
2see http://wwwf.imperial.ac.uk/~at515/bigworkshop.html for details of the workshop.
3see http://www.maths.tcd.ie/~islands/index.php?title=Main_Page
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think of the xi as position coordinates in R3 and the yi as the coefficients of a cotangent
vector, yidx

i. The action of an algebra element ~a will generate a vector

X = ai
∂

∂xi

where the coefficients are constants. Now

iXω = aidyi = d(aiyi)

which tells us that
fa = aiyi

and since ~a ∈ g we can read off that

µ(~x, ~y) = ~y.

The case of the rotation group proceeds in a similar manner we just need to consider
the vector which generates rotations, this will lead to getting a moment for the angular
momentum.

Example 1.2. Another example, taken from [1] this time, is when M = End(Cn) and
G = U(n). In this case the tangent space to N is isomorphic to N with metric

g(A,B) = Re tr(AB†)

and G acts by conjugation. In [1] here he takes

fXζ =
i

2
tr
(
[A,A†]Xζ

)
from which we can read off that the moment map is

µ(A) =
i

2
[A,A†].

To see this more rigorously consider that an element ζ ∈ u(n) acts on N through [Xζ , A]
for Xζ the associated tangent vector. Then we have that

ω([Xζ , A]Y ) = g(I[Xζ , A]Y ),

= Re tr
(
i[Xζ , A]Y †

)
,

= (dfXζ)(Y ),

and we can read off µ from f .

Example 1.3. Our final example is also given in [1] but originates in [3]. Take M = A
the infinite dimensional affine space of connections on a unitary principal bundle over
a Riemann surface M . Here the connection is determined by its (0, 1) part, as the
(1, 0) part can be found via conjugation, and the tangent space at a connection A is
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Ω0,1(M ; adP ⊗ C). Here A is modelled on Ω0,1(M ; adP ⊗ C). Now on TA we have the
hermitian metric

g(Ψ,Φ) = 2i

∫
M

tr
(
Ψ†Φ

)
, (1.1)

where we are tracing over the adjoint representation, † is hermitian conjugation and
we take the composition Ψ†Φ to mean the symmetric product ?Ψ† ∧ Φ. There is also a
natural symplectic structure given by

ω(α, β) = −2

∫
M

tr (ᾱ ∧ β)

for α, β ∈ Ω0,1(M ; adP ⊗ C). Now for every hermitian metric there is a Kähler form
given by ω(X, Y ) = g(IX, Y ) so we should be able to find an explicit relation between ω
and g in local coordinates, for now I will just satisfy myself that ω is definitely symplectic
and that it may need to be modified by some constant factors to get that it is the Kähler
form.

We want to consider the action of the group of gauge transformation, G,endomorphisms
of the bundle P which has Lie algebra g. Now we can identify g with Ω0(M ; adP ), the
space of adjoint valued functions on M . This means that we can generate a vector field
on A through ∂̄Aζ for ζ ∈ g. Also we should note that the dual of the Lie algebra can be
identified with Ω1,1(M ; adP ⊗ C).

This is because we can identify 0-forms with 2-forms through the Hodge star and elements
of g with g∗ through the pairing <,>,

Ω0(M ; adP ⊗ C) oo λ //
OO

?
��

gOO

〈,〉
��

Ω1,1(M ; adP ⊗ C) oo
λ̃

// g∗

Note that depending on your conventions the Lie algebra of a unitary group, not g but
adP in this case, will either be hermitian or anti hermitian, for example SU(2) has
Lie algebra su(2) which is spanned by either − i

2
σi or 1

2
σi where the first case is anti

hermitian, and the second case is hermitian. We will take the Lie algebra to be traceless
and anti-hermitian.

To make things clearer we want to first explore the “real” case, this is based on the
discussion in [2]. Here A is modelled on Ω1(M ; adP ) with TAA ' Ω1(M ; adP ) and the
symplectic form will be

ω(α, β) =

∫
M

tr (α ∧ β) , for α, β ∈ Ω1(M ; adP ).

Now we saw that we can identify the adjoint valued functions with g and that we can also
generate a vector field from every ζ ∈ g using its infinitesimal action dBφ for dB ∈ A,
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B ∈ Ω1(M ; adP ). Consider;

ω(dBζ, A) =

∫
M

tr (dBζ ∧ A) ,

= −
∫
M

tr (ζ ∧ dBA) ,

= −
∫
M

tr (dBA ∧ ζ) ,

= − lim
ε→0

1

ε

(∫
M

tr (FB+εA ∧ ζ)−
∫
M

tr (FB ∧ ζ)
)
,

= dA

(
−
∫
M

tr (FB ∧ ζ)
)

(A),

= dA〈µ(B), ζ〉(A),

this shows that depending how we interpret the pairing that between g and g∗ we can say
that

fζ(B) = 〈µ(B), ζ〉 = −
∫
M

tr (FB ∧ ζ)

is the Hamiltonian function coming from a vector associated to ζ ∈ g at the connection
dB ∈ A and that

µ(B) = FB

is the moment map, where we assume that the pairing <,> involves an integration over
M to remove the differential form pieces and get genuine elements of g, g∗.

The complex case will be similar but now we need to be careful about the hermitian
metric which we are given as it involves conjugation of both the coordinates and the
adjoint values coefficients.

g(X, Y ) = 2i

∫
M

tr
(
X†Y

)
.

Also since we are now considering a holomorphic vector bundle the connection is unitary
and will be completely determioned by the 0, 1 part as this is related to the 1, 0 part
through conjugation. This explains the notation ∂̄A for the connection. If we take the
same starting point as before, ∂̄B ∈ A, A ∈ Ω(0,1)(M ; adP ⊗ C), we have that

ω(∂̄Bζ, A) = g(I∂̄Bζ, A),

= 2i

∫
M

(tr
(
(i∂̄Bζ)†A

)
,

= 2

∫
M

tr
(
∂̄†Bζ

†A
)
,

= 2

∫
M

tr (ζ∂BA) ,

= 2

∫
M

tr (∂BAζ) ,

= 2dA

(∫
M

tr (FBζ)
)

(A),
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from this we can read off that we have a Hamiltonian function

fζ(B) = 2

∫
M

tr (FBζ)

and a moment map
µ1(B) = FB.

Now we can also consider the action of G on Ω(1,0)(M ; adP ⊗C). In this case the Kähler
metric will be

g(Λ,Ψ) = 2i

∫
M

tr
(
ΛΨ†

)
, (1.2)

where Λ,Ψ ∈ TΦΩ(1,0)(M ; adP ⊗C). We could proceed by analogy with Example 1.2 and
take

fXζ(Φ) =

∫
M

tr ([Φ,Φ∗]ζ)

as a Hamiltonian function at Φ ∈ Ω(1,0)(M ; adP⊗C) for ζ ∈ g and Xζ ∈ Ω(1,0)(M ; adP⊗
C) its associated vector field. Using this we can read off that the moment map is

µ2(Φ) = [Φ,Φ∗].

However we can also go through the details ourselves starting from the observation that
the action of an element ζ ∈ g on Ω(1,0)(M ; adP ⊗ C) is the adjoint action, [Φ, ζ] for
Φ ∈ Ω(1,0)(M ; adP ⊗ C). Using this we consider

ω([Φ, ζ],Ψ) = g(I[Φ, ζ],Ψ),

= 2i

∫
M

tr
(
i[Φ, ζ]Ψ†

)
,

= −2

∫
M

tr
(
ΦζΨ† − ζΦΨ†

)
,

= −2

∫
M

tr
(
ζΨ†Φ− ζΦΨ†

)
,

= 2

∫
M

tr
(
ζ[Φ,Ψ†]

)
,

= 2

∫
M

tr
(
[Ψ,Φ†]ζ

)
,

= lim
ε→0

2

ε

∫
M

tr
(
[Φ, (Φ + εΨ +O(ε2))†]ζ − [Φ,Φ†]ζ

)
,

= d
(

2

∫
M

tr
(
[Φ,Φ†]ζ

) )
(Ψ),

where d is the de-Rham differential for the complex over Ω(1,0)(M ; adP ⊗C). This gives
us that

f[ζ,Φ](Φ) = 2

∫
M

tr
(
[Φ,Φ†]ζ

)
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is a Hamiltonian vector field at Φ ∈ Ω(1,0)(M ; adP ⊗ C) and that the moment map is

µ2(Φ) = [Φ,Φ†].

This seems a better way to find µ2 as we see that the same factor of 2 arises in both
cases so even if we don’t parcel that in with the normalisation of the trace it will be a
common factor when we consider the sum of the moment maps. Putting this together
we have that

µ(A,Φ) = µ1(A) + µ2(Φ). (1.3)

Building on this last example we have that

µ(A,Φ) = 0

is equivalent to the curvature part of the self duality equations,

FA + [Φ,Φ∗] = 0.

So this part of the self-duality equations is the moment map for G acting on the Kähler
manifold

N = A× Ω(1,0)(M ; adP ⊗ C).

2 Moduli Space of Solutions to the Self-Duality equations

Changing tactic we now consider the moduli space of solutions to the self-duality equa-
tions, in our context this just means the space of connections A ∈ A and Higgs fields
Φ ∈ Ω(1,0)(M ; adP ⊗ C) satisfying the self duality equations

∂̄AΦ = 0, (2.1)

FA + [Φ,Φ∗] = 0, (2.2)

modulo gauge transformations. Here adP is a vector bundle over the Riemann surface
M and is an associated vector bundle of the principal bundle P → R4 that we start with
before dimensional reduction, see [1]. I will will not show that M is smooth but will
sketch how to construct this moduli space and explore some of its properties;

1. The self-duality equations can be interpreted as Hyperkähler moment maps, we
are all ready part way there after the last section.

2. The space of solutions to the self-duality equations has a Hyperkähler structure.

3. The moduli space,M, can be realised through a Hyperkähler quotient and as such
possesses as naturalHyperkähler metric.

4. Finally there is a CP1’s worth of complex structure, often called a twistor sphere
so the space M× CP1 can be identified with the moduli space of stable Higgs
bundles, complex structure I, or the moduli space of flat connections, complex
structure J .
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2.1 Hyperkähler Structure of the Moduli Space

Let us start with the statement that T(A,Φ)N has a natural Kähler metric coming from
the Kähler metrics on the two parts, Equation (1.1) and Equation (1.2), this is

g((B1,Ψ1), (B2,Ψ1)) = 2i

∫
M

tr
(
B†1B2 + Ψ1Ψ†2

)
(2.3)

Now the quotient will definitely inherit an inner product which is invariant under gauge
transformations and thus a metric. Theorem 6.1 in [1] is the statement that the metric
is complete, read geodesically complete. In fact the metric on M is Hyperkähler, there
exists a trio of complex structures, I, J,K which give a representation of the quaternions.
Explicitly we have the action of the other complex structures through

J(A,B) = (iB∗,−iA∗), K(A,B) = (−B∗, A∗),

note we can show that
JK(A,B) = i(A,B) = I(A,B).

We also know that for each complex structure there will be a Kähler form and thus a
moment map,

ω1(X, Y ) = g(IX, Y ), ω2(X, Y ) = g(JX, Y ), ω3(X, Y ) = g(KX,Y ).

We know that the moment map corresponding to ω1 is

µ1(A,Φ) = F (A) + [Φ,Φ†],

and its zero set gives the second of the self duality equations. The first self duality
equation,

∂̄AΦ = 0,

can also be interpreted as a moment map and this is what we want to do now. N has
tangent space TA,ΦN ' Ω(1,0)(M ; adP ⊗C)

⊕
Ω(0,1)(M ; adP ⊗C), which has the natural

holomorphic symplectic form, ΩI = ωJ + iωK , where

ΩI((Ψ1,Φ1), (Ψ2,Φ2)) =

∫
M

tr (Φ2Ψ1 − Φ1Ψ2) .

Note that in contrast to the symplectic form associated with the metric above this
does not have real coefficients so should be thought of as a complex combination of two
symplectic forms related to the hermitian metric. It has constant coefficients so is closed
over N . The action of an infinitesimal gauge transformation, ψ ∈ Ω0(M ; adP ⊗ C) on
N defines the vector field X = (∂̄Aψ, [Φ, ψ]). Now to find the moment map associated
to this action we consider,

(iXω)(Ȧ0,1, Φ̇) = ω((d′′Aψ, [Φ, ψ]), (Ȧ0,1, Φ̇)),

=

∫
M

tr
(

Φ̇∂̄Aψ − [Φ, ψ]Ȧ0,1
)
,

=

∫
M

tr
(
−ψ∂̄AΦ̇− ψ[Ȧ0,1,Φ]

)
,

= dN

(
−
∫
M

tr
(
∂̄AΦψ

) )
(Ȧ0,1, Φ̇),
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from which we can read off the Hamiltonian function

fX(A,Φ) = −
∫
M

tr
(
∂̄AΦψ

)
and the moment map

µ(A,Φ) = ∂̄AΦ

whose zero set gives the first self duality equation. We mentioned above that since ΩI

can be decomposed as
ΩI = ω2 + iω3

where ω2, ω3 are Kähler forms for the other complex structures J and K as above. This
means that the self-duality equations are given by

µi(A,Φ) = 0

for i = 1, 2, 3 giving the moment maps associated with the action of the group of gauge
transformations acting onN with Kähler form ωi. Now the moduli space,M, of solutions
to the self-duality equations was introduced as the space of associated vector bundles,
adP for a given principal bundle P over R4, over a Riemann surface, M , which have a
connection A and a smooth holomorphic section Φ that satisfy the self-duality equations,
modulo gauge equivalence,

M = {(adP,M,A,Φ), A ∈ A,Φ ∈ Ω(1,0)(M : adP ⊗ C)|∂̄AΦ = 0, FA + [Φ,Φ∗] = 0}/G.
(2.4)

However, we can also interpret this space as

M =
3⋂
i=1

µ−1
i (0)/G

since the preimage of zero under the µi is the set of A,Φ which satisfy the self-duality
equations. Since we have see that the µi are hyperkähler moment maps, related to the
hyperkähler structure on T(A,Φ)N , we can now show thatM also possesses a hyperkähler
metric.

Theorem 2.1 (Hitchin Theorem 6.7 [1]). Let M be a compact Riemann surface of
genus g > 1 and M the moduli space of irreducible solutions to the SO(3) self dual-
ity conditions. Then the natural metric on the 12(g − 1) dimensional manifold M is
hyperkählerian.

Proof. Let Y be a tangent vector in N , tangent to the submanifold, M̄ =
⋂3
i=1 µ

−1
i (0),

of solutions to the self-duality equations. Then we have that

µi|M̄ = 0

which implies that
dµi|T(A,Φ)M̄ = 0
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so
dfi,X(Y ) = 0

where fi,X is the Hamiltonian function associated to the moment map µi and the vector
field X generated by the action of G. Now

dfi,X(Y ) = ω(X, Y )

so we have that
g(IY, Z) = g(JY, Z) = g(KY,Z) = 0

for all vectors Z tangent to the orbit of G, as the kähler forms are invariant under the G
action and the G action preserves M̄. This gives us that IY, JY,KY are orthogonal to
the orbit as well and thus the horizontal space is preserved by I, J,K. Now the action
of G also preserves the complex structures so the tangent space to a point inM admits
an action of the quaternions which is compatible with the metric. This is an almost
hyperkähler metric. For it to be hyperkähler we need that the three symplectic forms
are closed, [1] has a lemma showing that integrability of the complex three complex
structures is equivalent to the closure of their two forms but I will not reiterate that
here as it is a standard result. From the projection p : M̄ →M we have that

p∗ω̄i = ωi|M̄,

where the ω̄i are the 2-forms onM associated to I, J,K. Now dωi = 0 so p∗dω̄i = 0 and
as p is the projection in a fibration, dω̄i = 0. Thus the ω̄i are all closed and M has a
hyperkähler metric.

The dimension stated in the theorem and the group given are to make contact with the
work earlier in [1], nothing about those facts is used to prove the theorem here.

We have now achieved the first three points, before moving on to the last point we want
to make one more observation which singles out the complex structure I. If (A,Φ) is
a solution of the self-duality equations then so is (A, eiθΦ) for constant θ. In fact this
U(1) action preserves the metric of Equation (2.3) above and thus acts by isometries on
M. However, it does not preserve the symplectic form of Equation (2.1) so will only
preserve one of the complex structures, I, but not the others, J,K. This action will also
have a moment map we we calculate now. The vector field associated with the action is

X = (0, iΦ)

so

(iXω1)(Y ) = g(IX, Y ) = g(−Φ, Y ) = −1

2
(dg(Φ,Φ))(Y )

giving the moment map as

−1

2
||Φ||2L2 .

In fact an observation made in Section 7 of [1] is that the complex structure I is one
that we get if we interpret M as the moduli space of stable Higgs bundles, pairs (V,Φ)
satisfying the stability condition, through Theorem 4.3 in [1]. However, that is for
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another talk to make more precise. Also note that the critical points of the moment
map coming from the circle action are the fixed points of that action so we could using
the moment map as a Morse function to explore the topology ofM, this is done in Section
6 of [1]. In fact there it is proven that in this moduli space of stable pairs interpretation
M is non-compact, connected and simply connected. There are also some results about
its Betti numbers which I do not quote here.

2.2 The Other Complex Structures

Now that we know that I is special due to its invariance under the circle action it is
natural for us to ask about the other complex structures J,K. We can actually do better
than just saying that we have three complex structures, for x ∈ S2, viewed in terms of
the embedding coordinates in R3, we have that

(x1I + x2J + x3K)2 = −1

so there is actually a whole S2’s worth of complex structures. This leads us to consider
the product space

M× S2

which, as S2 is a complex manifold, is a complex manifold with the complex structure
(Ix, IS2), where Ix = x1I + x2J + x3K for x ∈ S2. This is called the twistor space of
complex structures. This space is important in the proof of the following Proposition
from [1]

Proposition 2.2 (Proposition 9.1 from [1]). Let M be the moduli space of solutions to
the self-duality equations on a rank-2 vector bundle of odd degree and fixed determinant
over a compact Riemann surface of genus at least 2. Then

1. all the complex structures of the hyperkählerian familly other than ±I are equiva-
lent,

2. With respect to each such structure M is a Stein manifold,

3. M has no non-constant bounded holomorphic functions.

I will not prove this hear as it is covered in detail in [1]. The one comment I will make
is that the circle action that we encountered above preserves the complex structure of
M× S2 when we interpret S2 as the space of covariant constant 2-forms,

x1ω1 + x2ω2 + x3ω3,

of unit length. As part of the proof in [1] it is shown that the moment map for the circle
action becomes a Kähler potential for the Kähler forms ω2 and ω3 so they are both
cohomologous to zero. We already know that the complex structure I corresponds to
the moduli space of stable pairs of Higgs bundles and now want to see what the complex
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structure J corresponds to. Remember that the tangent space to a point in N with
respect to I is

T(A,Φ)N ' Ω(0,1)(M ; adP ⊗ C)
⊕

Ω(1,0)(M ; adP ⊗ C).

We can define an isomorphism α : N → A× Ā by

α(A,Φ) = (∂̄A + Φ∗, ∂A + Φ),

with ∂A + ∂̄A = dA the covariant derivative with respect to the connection A. The
derivative of α is 4

dα(A,B) = (A+B∗,−A∗ +B)

which composes with J to give

dα(J(A,B)) = dα(iB∗,−iA∗) = (iB∗ + iA, iB − iA∗) = idα(A,B).

So the map α relates N with complex structure J and A× Ā with its natural complex
structure multiplication by i. Now we want to know what happens to the self duality
equations under this transformation. An element of A × Ā is a pair of connections
(∂̄1, ∂2) which combine to give a PSL(2,C) connection d = ∂2 + ∂̄1. It is in PSL(2,C) as
the one form piece will now be a complex linear combination of the two unitary matrix
valued one forms in 1 and 2 and SL(2,C) is the complexification of SU(2) so the complex
linear combination lives there 5. Now if we start from a pair (A,Φ) which solve the self
duality equations then under α we have that

α(A,Φ) = (∂̄A + Φ∗, ∂A + Φ) = (∂̄1, ∂2)

so
d2 = (∂A + Φ + ∂̄A + Φ∗)2 = [∂A, ∂̄A] + [Φ,Φ∗] = FA + [Φ,Φ∗] = 0

so the new connection is flat. Also using ∂2 and ∂̄1 we get the unitary connections d1

and d2 which we met above. Now the operator, ∂̄A + Φ∗ goes to

∂A − Φ

under the conjugation denoted by a bar so we have that

F1 = d2
1 = (∂1 + ∂̄1)2 = (∂̄A + Φ∗ + ∂A − Φ)2 = FA − [Φ,Φ∗] = −2[Φ,Φ∗]

and

F2 = d2
2 = (∂2 + ∂̄2)2 = (∂̄A − Φ∗ + ∂A + Φ)2 = FA − [Φ,Φ∗] = −2[Φ,Φ∗]

giving us that
F1 = F2.

So picking the complex structure J lets us identify solutions of the self-duality equations
with PSL(2,C) flat connections. This means that if we choose the complex structure J ,
M becomes the moduli space of flat PSL(2,C) connections. In [1] several results about
flat PSL(2,C) connections are now presented which are the analogous to results about
solutions of the self-duality conditions. These include:

4To see this consider that (dα)(A,B) = limε→0
1
ε [α(X + εA, Y + εB +O(ε2))− α(X,Y )]

5To see why it is PSL(2,C) we just need to remember that we are considering the SO(3) self-duality
equations so the quotient by ±I has already been done.
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1. Theorem 9.13 in [1]; If (A,Φ) is an irreducible solution of the self-duality equations
then ∂A + ∂̄A + Φ + Φ∗ is an irreducible, flat, PSL(2,C) connection.

2. Proposition 9.18 in [1]; If we have a pair of irreducible flat PSL(2,C) connections
coming from irreducible solutions to the self-duality equations. Then if the flat
connections are related by a complex gauge transformation the solutions to the
self-duality equations are related by an SO(3) gauge transformation.

3. Theorem 9.19 in [1] where it is attributed to Donaldson; Let P be a prnciple SO(3)
bundle over a compact Riemann surface M . For any irreducible flat connection
on P c there is a gauge transformation taking it to a PSL(2,C) connection A+ ψ
where (A,ψ) satisfy the self-duality equations.

Thus many of the statements that we could prove about (M, I) can also be proved for
(M, J) though as stated in [1] (M, J) is really a covering of the space of equivalence
classes of flat connections, this is to ensure that the space is smooth and exatly the same
thing is done in Section 2 of [1] to get to (M, I). This will be our stopping point for
now but I may come back to these notes as I read more.
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