
Membrane dynamics and matrix regularisation

Notes C Ross, September 20, 2017

These are notes for a talk I gave on the relationship between the quantisation of a
classical super-membrane and matrix quantum mechanics. The talk was part of the
seminar series which took place as a continuation of the strings and D-branes reading
group1. These notes are mostly a rewriting of the material in [1] as that was the most
accessible source. The talk was just on Section 2 and 3 with a small amount of motivation
drawn from Section 1

1 Supergravity and some facts about strings and membranes

These are just some general facts about supergravity (Sugra) and string theory from the
introductory section of [1].

Sugra is a theory with “local” (gauged) super symmetry. One way to see this is by
looking at the anti-commutator of two (spinor) super charges,

{Q,Q} ∼ Pµ. (1.1)

As this anti commutator is proportional to the momentum generator Pµ which becomes
a local vector field in GR generating a diffeomorphism.

The maximum dimension for Sugra is D = 11. If the dimension is grater than 11 there
will be fields of spin greater than 2 in the theory and these are problematic to work
with. I think Weinberg QFT talks about this in detail. It is to do with defining a
current associated with the field.

There is a unique locally supersymmetric classical theory in D = 11. This theory
has N = 1 so the Q’s live in a single 32-component spinor representation of the 11
dimensional Lorentz group. The theory has the following fields:

• eaI the Veilbein, a 44 component bosonic field. This is an alternative description
of the metric field gIJ .

• AIJK the 3-form potential, an 84 component bosonic field.

• ψI Majorana fermions (gravation), a 128 component fermionic field.

Here we use I, J,K ∈ {0, 1, . . . , 9, 11} and µ, ν ∈ {0, 1, . . . , 9}. The number of fermionic
and bosonic components match up because of the supersymmetry.

In ten dimensions there are two N = 2 theories with the Q’s as two 16-component
spinors. The theories are

• IIA, the two spinors are of opposite chirality.

1see http://www.macs.hw.ac.uk/~cdr1/String_reading_group for details of the reading group
and the other talks in the seminar series.
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• IIB, the two spinors have the same chirality.

The field content of the two theories are

IIA: eaµ, φ, Bµν , C
(1)
µ , C

(3)
µνρ.

IIB: eaµ, φ, Bµν , C
(0), C

(2)
µν , C

(4)
µνρσ.

Where φ is a dilaton field and the C
(p)
µ1...µp are Ramond-Ramond p-form fields. The B

field couples to a string world sheet through∫
Σ

Bµνε
ab∂aX

µ∂bX
ν , (1.2)

where now a, b ∈ {0, 1} are related to the string world sheet coordinates. The string has
two interesting, and related, quantities its length, ls =

√
α′ and its tension Ts = 1

2πα′ .
The p + 1 R-R field couples to a Dp-brane in an analogous manner. Fields could also
couple magnetically but we will not give those details here.

We now note some facts about string theory:

1. World sheet superstring quantisation gives a first quantised theory of gravity from
the point of view of the target space. This means that a state in the string Hilbert
space corresponds to a single particle state in the target space of a single string.

2. The world sheet approach is perturbative in the string coupling gs, related to the
expectation of the dilaton field.

In D = 11 Sugra there is a “Black-membrane” solution analogous to a string, with
world-volume Σ, which couples to the three form through∫

Σ

AIJKε
abc∂aX

I∂bX
J∂cX

K , (1.3)

where now a, b, c ∈ {0, 1, 2} give the membrane 3-volume coordinates. We can, and will
later on, quantise the supermembrane in light cone coordinates to get a matrix quantum
mechanics theory. This theory will have two advantages:

1. It provides a microscopic description of quantum gravity in 11 dimensions.

2. It provides a non-perturbative definition which is second quantised in the target
space.

We can relate type IIA string theory to M-Theory through a duality. To go from M-
theory in 11 dimensions to string theory we take the theory on M10×S1 where the cirlce
has radius R. Taking R to be small we get IIA. Objects in the two theories are related
as follows
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• “wrapped” membrane goes to fundamental string,

• unwrapped membrane goes to D2-brane,

• “wrapped” M5-brane goes to D4-brane,

• unwrapped M5-brane goes to NS5-brane (magnetically charged under B field).

There is also a relationship between the constants on the string side and the 11 dimen-
sional Planck length, l11 and R given by

gs =

(
R

l11

) 3
2

, l2s =
l311

R
. (1.4)

These relations suggest that when we want to go from type IIA string theory to M-
theory if we take the limit g → ∞ then an extra dimension emerges to give M-theory
in flat space. I’m not going to pretend that I understand this relationship, I can sort of
see the dimensional reduction direction but the emergent dimension is a puzzle.

An application of this relationship is that if we consider the p11 momentum modes
associated with the graviton multiplet then this corresponds to massive Kaluza-Klein
particles in 10 dimensions coupled to gµ11 (C1

µ). These particles correspond to D0-branes
in IIA which gives us our first hint of the importance of the D0-brane gauge theory. As
we saw in [2] The gauge theory on the world-volume of a D0-brane is a supersymmetric
matrix quantum mechanics.

2 Classical bosonic membrane theory

We now turn our attention to a Polyakov-type approach to the world-volume theory of
a classical bosonic membrane. Again we will be following the method given in [1].

Consider our membrane in flat D-dimensional Minkowski space

MD ' RD−1,1. (2.1)

A dynamical membrane sweeps out a 3-dimensional world volume, V , in MD. In other
words the membrane is described by a map

X : V →MD. (2.2)

We choose the coordinates, σα α ∈ {0, 1, 2} on V , usually we will write σ0 = τ for the
time-like coordinate and σa, with a ∈ {1, 2}, for the space-like coordinates. The motion
will be described by D functions, Xµ(σ0, σ1, σ2).

As with the string it is natural to consider a Nambu-Goto type action,

S = −T
∫
d3σ
√
−dethαβ, (2.3)
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where the membrane tension is

T =
1

(2π)2l3p
(2.4)

and
hαβ = ∂αX

µ∂βXµ (2.5)

is the pullback of the flat metric, η = diag(−,+, . . . ,+). As in the case of the string
the presence of the square root makes this action tricky to work with. However, we can
reformulate it in the Polyakov-esque form

S = −T
2

∫
d3σ
√
−γ
(
γαβ∂αX

µ∂βXµ − 1
)
. (2.6)

Here γαβ is an auxiliary metric on V and γ = detγαβ. There is a key difference between
this action and the Polyakov action for the string, the presence of the factor of −1
in the brackets. This is needed as now we do not have a scale invariant theory. In
[1] it is referred to as a “cosmological” term presumably this is because it looks like a
Gauss-Bonnet term.

We can vary the action, Equation (2.6), with respect to γαβ to find the equation of
motion

γαβ = ∂αX
µ∂βXµ = hαβ. (2.7)

If we substitute this into Equation (2.6) and use that γαβγαβ = δαα = 3 we arrive at
Equation (2.3). Thus demonstrating that the two actions are equivalent.

If we vary with respect to Xµ then we arrive at the equation of motion

∂α
(√
−γγαβ∂βXµ

)
= 0. (2.8)

If we were dealing with the string then this is the point that we would want to gauge fix γ
before trying to quantise the action. However, for the membrane we have 6 independent
metric components and only three diffeomorphism symmetries so we cannot completely
fix γ. We can fix γ0α! We do this by taking

γ0a = 0, γ00 = − 4

ν2
h̄ ≡ − 4

ν2
dethab, (2.9)

where ν is an arbitrary constant. If we do this we cannot fix anymore components of γ
and we can only enforce this gauge when V has the specific form of Σ×R, where Σ is a
Riemann surface.

After this gauge choice we can use the equation of motion for γαβ, Equation (2.7), to
eliminate it from the action and arrive at

S =
Tν

4

∫
d3σ

(
ẊµẊµ −

4

ν2
h̄

)
(2.10)

Example 2.1. To see this note that the gauge fixing, Equation (2.9), gives us that

γ = detγαβ = − 4

ν2
h̄ detγab. (2.11)
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Now the equation of motion for γ , Equation (2.7), gives us that

detγab = dethab = h̄, (2.12)

and all together we have that
√
−γ =

2

ν
h̄ (2.13)

Next we need to consider the term in brackets

γαβ∂αX
µ∂βXµ − 1 = γ00ẊµẊ + γab∂aX

µ∂bXµ − 1, (2.14)

= − ν
2

4h̄
ẊµẊ + γabγab − 1, (2.15)

= − ν
2

4h̄
ẊµẊ + 1, (2.16)

where we have used Equations (2.7) and (2.7) as well as the identity

γabγab = δaa = 2. (2.17)

Putting this all together we have that

S = −T
2

∫
d3σ
√
−γ
(
γαβ∂αX

µ∂βXµ − 1
)
, (2.18)

= −T
2

∫
d3σ

2

ν
h̄

(
− ν

2

4h̄
ẊµẊ + 1

)
, (2.19)

=
Tν

4

∫
d3σ

(
ẊµẊ − 4

ν2
h̄

)
, (2.20)

which is the claimed result.

To make contact with our usual intuition from classical mechanics we can use the canon-
ical (presumably the structure on the Riemann surface Σ) Poisson bracket structure on
the membrane to rewrite the action yet again. This structure is that at constant τ the
bracket is

{f, g} = εab∂af∂bg. (2.21)

There will be a symplectic form associated with this Poisson structure and we choose the
coordinates σ such that with respect to this symplectic form the area of the Riemann
surface is ∫

d2σ = 4π. (2.22)

I think that we are actually working the other way round. The Riemann surface Σ
is Kähler and thus has a Kähler form and we would “invert” this to get the Poisson
bracket. Using this Poisson bracket we can rewrite the action as

S =
Tν

4

∫
d3σ

(
ẊµẊ − 2

ν2
{Xµ, Xν}{Xµ, Xν}

)
, (2.23)
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and the Xµ equation of motion becomes

Ẍµ =
4

ν2
∂a
(
h̄hab∂bX

µ
)

=
4

ν2
{{Xµ, Xν}, Xν}. (2.24)

Checking this is left as an exercise to the reader/ listener.

As we have both, partially, gauge fixed γαβ and eliminated it from the action there are
some constraints. These are

ẊµẊµ = − 4

ν2
h̄ = − 2

ν2
{Xµ, Xν}{Xµ, Xν}, (2.25)

Ẋµ∂aXµ = 0, (2.26)

⇒ {Ẋµ, Xµ} = 0. (2.27)

Check that the audience thinks that these are easy to see.

At this point we can observe that the (classical, bosonic) dynamical membrane is a
constrained dynamical system given by Equations (2.23), (2.25), (2.27). This theory has
the D functions Xµ on V ' Σ× R as its degrees of freedom. We should also note here
that while the theory is currently covariant, if not manifestly so due to separating the
timelike and spacelike coordinates, it is hard to quantise due to the constraints. This
was also the case for the string. However, the constraints, Equations (2.25) and (2.27),
are non-linear in this case so a covariant quantisation is more complicated than it was
for the string.

2.1 Light-cone coordinates and a Hamiltonian

To proceed we will use light cone coordinates on MD,

X± =
1√
2

(
X0 ±XD−1

)
, (2.28)

and work in the light cone gauge

X+(τ, σ1, σ2) = τ. (2.29)

This enables us to solve the constraints as

Ẋ− =
1

2
Ẋ iẊ i +

1

ν2
{X i, Xj}{X i, Xj}, (2.30)

∂aX
− = Ẋ i∂aX

i. (2.31)

To move to the Hamiltonian picture we need to calculate the conjugate momenta,

Pµ =
∂L
∂Ẋµ

=
Tν

2
Ẋµ. (2.32)

We can then see that the total momentum in the + direction is

p+ =

∫
d2σP+ =

Tν

2

∫
d2σẊ+ = 2πνT. (2.33)
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performing the Legendre transform and integrating out τ we get that the Hamiltonian
is

H =
Tν

4

∫
d2σ

(
Ẋ iẊ i +

2

ν2
{X i, Xj}{X i, Xj}

)
, (2.34)

and it is subject to the constraint

{Ẋ i, X i} = 0 (2.35)

on the coordinates transverse to the light cone. Checking this is left as an exercise to the
reader/ listener but it is essentially the same calculation as can be done for the string.

There is still a residual invariance under time-dependent area preserving diffeomor-
phisms, this is because these do not change the symplectic from and thus will not change
the Hamiltonian. Even in light cone coordinates this theory is still hard to quantise,
compare to the string which is fairly easy to quantise in light cone coordinates. To get
round this we will utilise a matrix regularisation of the theory. This regularisation will
actually make sense of the arbitrary parameter ν that I have so far left unexplained.

3 Matrix regularisation

As we are again following the discussion from [1] we will only give the details for when
Σ = S2. However, the same U(N) matrix theory arises on a Riemann surface of arbitrary
genus as demonstrated in [3]. If we take Σ = S2 then the symplectic form will be
SO(3) invariant and we will describe functions on the membrane in terms of Cartesian
coordinates (ζ1, ζ2, ζ3) satisfying ζ2

1 +ζ2
2 +ζ2

3 = 1. The Poisson brackets for these functions
is

{ζA, ζB} = εABCζC , (3.1)

with A,B,C ∈ {1, 2, 3}, this is the same algebraic structure as the generators of SU(2).
We will there fore associate the coordinate functions with the generators of the N -
dimensional representation of SU(2). The normalisation factor ν will be ν = N . The
correspondence is

ζA →
2

N
JA, (3.2)

with the JA being the generators of the N dimensional representation of SU(2) which
satisfy the commutation relations

− i[JA, JB] = εABCJC . (3.3)

We can use spherical harmonics to express any function on the membrane as

f(ζ1, ζ2, ζ3) =
∑
l,m

clmYlm(ζ1, ζ2, ζ3). (3.4)

The spherical harmonics will be polynomials in the coordinates

Ylm(ζ1, ζ2, ζ3) =
∑

t
(lm)
A1A2...Al

ζA1 · · · ζAl
(3.5)
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where the coefficients are symmetric and traceless. We can use the coordinate Matrix
correspondence, Equation (3.2), to approximate the spherical harmonics by the matrices
Ylm for l < N . These approximations are constructed as

Ylm(ζ1, ζ2, ζ3)→ Ylm =

(
2

N

)l∑
t
(lm)
A1A2...Al

JA1 · · · JAl
. (3.6)

The restriction on l < N is because higher monomials in the JA will not be linearly
independent.

N.B we can see that the number of independent matrices is the same as the number of
independent spherical harmonic coefficients as

N2 =
N−1∑
l=0

(2l + 1) . (3.7)

We can use this to construct matrix approximations of functions of the ζ through

f(ζ1, ζ2, ζ3)→ F =
∑
l<N,m

clmYlm. (3.8)

We can also replace the Poisson brackets by matrix commutators in the following way,
which is very reminiscent of the minimal prescription approach to quantisation,

{f, g} → −iN
2

[F,G]. (3.9)

Integrals over the membrane, that is the world-volume a fixed τ , can also be replaced
by a matrix trace

1

4π

∫
d2σf → 1

N
TrF. (3.10)

We know that the Poisson bracket of two spherical harmonics is given by

{Ylm, Yl′m′} = gl
′′m′′

lm,l′m′Yl′′m′′ , (3.11)

which means that we can write the commutator of the matrix approximations as

[Ylm,Yl′m′ ] = Gl′′m′′

lm,l′m′Yl′′m′′ , (3.12)

where it can be shown that

lim
N→∞

−iN
2
Gl′′m′′

lm,l′m′ = gl
′′m′′

lm,l′m′ . (3.13)

Using this it can be shown that for two functions f, g satisfying {f, g} = h that

lim
N→∞

1

N
TrF =

1

4π

∫
d2σf, (3.14)

lim
N→∞

1

N
Tr

((
−iN

2
[F,G]−H

)
J

)
= 0, (3.15)

8



where J is the matrix approximation of any smooth function j on S2.

At this point we can quote our dictionary for converting between continuous quantities
and their matrix regularisation

ζA ↔
2

N
JA, {·, ·} ↔ −iN

2
[·, ·], 1

4π

∫
d2σ ↔ 1

N
Tr. (3.16)

Applying this dictionary to the Hamiltonian, Equation (2.34), we arrive at the regu-
larised Hamiltonian

H = (2πT ) Tr

(
1

2
ẊiẊi − 1

4
[Xi,Xj][Xi,Xj]

)
. (3.17)

The regularised equation of motion is

Ẍi + [[Xi,Xj],Xj] = 0 (3.18)

and the constraint, known as the Gauss constraint becomes

[Ẋi,Xi] = 0. (3.19)

As we know have a classical theory with a finite number of degrees of freedom we can
quantise it. This model has N×N matrix degrees of freedom and the matrices Xi are in
the adjoint representation of the symmetry group U(N). In [1] the case of V ' T 2 × R
is also sketched but I will not mention that here. It can be argued that the regularised
theory does not depend on the topology of V as we arrive at the same Hamiltonian. I
probably won’t comment more on this but there are more details in [1].

3.1 In a general background

So far we have discussed the case of a membrane in a flat background, MD. However,
the same story can be written down in a general background with metric, gµν and 3-
form potential Aµνρ. The new metric modifies the field in the Nambu-Goto type action,
Equation (2.3), in the following way

hαβ = gµν∂αX
µ∂βX

ν , (3.20)

and adds a copy of Equation (1.3) to make the action become

S = −T
∫
d3σ

(√
−dethαβ + 6Ẋµ∂1X

ν∂2X
ρAµνρ(X)

)
. (3.21)

Again this can be interpreted in a Polyakov esque form as

S = −T
2

∫
d3σ

(√
−γ
(
γαβ∂αgµνX

µ∂βX
ν − 1

)
+ 12Ẋµ∂1X

ν∂2X
ρAµνρ(X)

)
. (3.22)

The same gauge fixing story can then be applied and regularising this would result in a
more general matrix model. I won’t talk about this but [1] does give a brief mention to
this regularisation.
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3.2 Including fermions

Just as in String theory where we go to the superstring to get fermionic states we
need to consider a super-membrane. These theories can only be constructed in certain
dimensions D = 4, 5, 7, 11 and the number of independent susy generators is different in
each case, 2, 4, 8, 16. It is stated in [1] that theories in dimensions other than D = 11 are
believed to be problematic quantum mechanically so D = 11 is the critical dimension for
a super-membrane just as 10 was for the superstring. [1] is light on details here and cites
the original paper [4] for the details. Unfortunately this paper is not available through
the HW subscriptions so I will not be sketching any of the details.

The Hamiltonian gets in the light cone approach gets an extra fermionic term to become

H =
Tν

4

∫
d2σ

(
Ẋ iẊ i +

2

ν2
{X i, Xj}{X i, Xj} − 2

ν
θTγi{X i, θ}

)
, (3.23)

where γi are the SO(9) gamma matrices in the 16 dimensional representation and θ is
a 16 component Majorana spinor of SO(9). We can apply the matrix regularisation
procedure to this Hamiltonian to arrive at

H = (2πT ) Tr

(
1

2
ẊiẊi − 1

4
[Xi,Xj][Xi,Xj] +

1

2
θTγi[X

i, θ]

)
. (3.24)

4 BFSS conjecture

If time allows I will try and mention something about the M-theory as a matrix model
conjecture from [5] though the discussion will follow that given in [1].
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